Zhang Yuanyuan, Jang Soyeong, Hwang In-Wook, Jung Yun Kyung, Lee Bo Ram, Kim Joo Hyun, Kim Kwang Ho, Park Sung Heum
Department of Physics, Pukyong National University, Busan 48513, South Korea.
Hybrid Interface Materials Global Frontier Research Group, Pusan National University, Busan 608-737, South Korea.
ACS Appl Mater Interfaces. 2020 Jun 3;12(22):24827-24836. doi: 10.1021/acsami.0c05632. Epub 2020 May 19.
Achieving high efficiency and long-term device stability is a vital issue for the commercialization of organic-inorganic hybrid perovskite solar cells (PeSCs). In this work, phenylethylammonium iodide (PEAI)-induced bilateral interface engineering was developed to improve the device efficiency and stability of methylammonium lead triiodide (MAPbI)-based PeSCs. Introducing PEAI onto a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) layer modifies the surface properties of PEDOT:PSS and facilitates the formation of a high-quality perovskite active layer with enlarged grains on PEDOT:PSS. PEA in PEAI-PEDOT:PSS also alters the work function of PEDOT:PSS, leading to a reduction in the energy difference between the PEDOT:PSS and MAPbI perovskite layers, which decreases the energy loss during charge transfer. Additionally, depositing PEAI onto three-dimensional (3D) perovskite yields a two-dimensional/three-dimensional (2D/3D) stacked structure for the perovskite active layer. Because the two-dimensional (2D) top layer acts as a capping layer to prevent water penetration, the stability of the perovskite active layer is significantly enhanced. A PeSC device fabricated based on this combination exhibits enhanced power conversion efficiency (PCE) and an extended device lifetime compared to a pristine PeSC. Under high-humidity conditions (75 ± 5%), the PEAI-treated PeSC retains 88% of its initial power conversion efficiency (PCE) after 100 h. In contrast, a pristine PeSC device loses over 99% of its initial PCE after only 25 h under the same conditions.
实现高效率和长期器件稳定性是有机-无机杂化钙钛矿太阳能电池(PeSCs)商业化的关键问题。在这项工作中,开发了苯乙铵碘化物(PEAI)诱导的双边界面工程,以提高基于甲基铵三碘化铅(MAPbI)的PeSCs的器件效率和稳定性。将PEAI引入聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)层可改变PEDOT:PSS的表面性质,并有助于在PEDOT:PSS上形成具有更大晶粒的高质量钙钛矿活性层。PEAI-PEDOT:PSS中的PEA还会改变PEDOT:PSS的功函数,导致PEDOT:PSS与MAPbI钙钛矿层之间的能量差减小,从而减少电荷转移过程中的能量损失。此外,在三维(3D)钙钛矿上沉积PEAI会产生用于钙钛矿活性层的二维/三维(2D/3D)堆叠结构。由于二维(2D)顶层起到了防止水渗透的封盖层作用,钙钛矿活性层的稳定性显著增强。基于这种组合制造的PeSC器件与原始PeSC相比,具有更高的功率转换效率(PCE)和更长的器件寿命。在高湿度条件(75±5%)下,经PEAI处理的PeSC在100小时后仍保留其初始功率转换效率(PCE)的88%。相比之下,在相同条件下,原始PeSC器件在仅25小时后就损失了超过99%的初始PCE。