Suppr超能文献

腔捕获电子:锂掺杂的四氰基-2,6-萘醌二甲烷(TNAP)体系。

Cavity-trapped electrons: lithium doped tetracyano-2,6-naphthoquinodimethane (TNAP) systems.

作者信息

Vessally Esmail, Majedi Serveh, Hosseinian Akram, Bekhradnia Ahmadreza

机构信息

Department of Chemistry, Payame Noor University, Tehran, Iran.

School of Engineering Science, College of Engineering, University of Tehran, P.O.Box 11365-4563, Tehran, Iran.

出版信息

J Mol Model. 2020 May 7;26(6):118. doi: 10.1007/s00894-020-04384-7.

Abstract

The interesting features in the lithium based electride motived us to explore new species with electride properties. To achieve this goal, the tetracyano-2,6-naphthoquinodimethane (TNAP) species has been used as backbone to investigate systematic addition of lithium atoms to the TNAP backbone (Li@TNAP (n = 1-4) species) through density functional theory (DFT) simulation. After finding the most stable geometries for each Li@TNAP (n = 1-4) species by full optimization process, we show their electronic-structural features in this work. In the next step, the properties of electron-density-laplacian (∇ρ(r)), non-linear-optical (NLO), non-nuclear-attractor (NNA), and electron-localization-function (ELF) have been studied to incorporate the reported Li@TNAP (n = 1-4) species in two different categories, salt or electride. The obtained outcomes present that the Li@TNAP and the Li@TNAP molecules are the lithium-salt. In contrast, the Li@TNAP and the Li@TNAP molecules are lithium-based electrides along with the isolated electrons in the molecular structure.

摘要

锂基电子化合物中有趣的特性促使我们探索具有电子化合物性质的新物种。为实现这一目标,通过密度泛函理论(DFT)模拟,以四氰基-2,6-萘醌二甲烷(TNAP)物种为骨架,研究向TNAP骨架系统添加锂原子(Li@TNAP (n = 1 - 4) 物种)的情况。在通过完全优化过程找到每个Li@TNAP (n = 1 - 4) 物种的最稳定几何结构后,我们在这项工作中展示了它们的电子结构特征。下一步,研究了电子密度拉普拉斯(∇ρ(r))、非线性光学(NLO)、非核吸引子(NNA)和电子定域函数(ELF)的性质,以便将报道的Li@TNAP (n = 1 - 4) 物种分为盐或电子化合物两类。所得结果表明,Li@TNAP和Li@TNAP分子是锂盐。相比之下,Li@TNAP和Li@TNAP分子是基于锂的电子化合物,分子结构中存在孤立电子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验