Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea.
J Chem Phys. 2020 May 7;152(17):174101. doi: 10.1063/5.0005591.
Machine learning is becoming a more and more versatile tool describing condensed matter systems. Here, we employ the feed-forward and the convolutional neural networks to describe the frequency shifts of the amide I mode vibration of N-methylacetamide (NMA) in water. For a given dataset of configurations of an NMA molecule solvated by water, we obtained comparable or improved results for describing vibrational solvatochromic frequency shift with the neural network approach, compared to the previously developed differential evolution algorithm approach. We compared the performance of the atom centered symmetry functions (ACSFs) and simple polynomial functions as descriptors for the solvated system and found that the polynomial function performs better than the ACSFs employed in the description of the amide I vibrational solvatochromism.
机器学习正在成为一种越来越多用途的工具,可以描述凝聚态系统。在这里,我们采用前馈神经网络和卷积神经网络来描述 N-甲基乙酰胺(NMA)在水中的酰胺 I 模式振动的频率位移。对于 NMA 分子在水中溶剂化的给定数据集的配置,我们使用神经网络方法来描述振动溶剂化频率位移,与之前开发的差分进化算法方法相比,获得了可比或更好的结果。我们比较了基于原子的对称函数(ACSFs)和简单多项式函数作为溶剂化系统描述符的性能,发现多项式函数在酰胺 I 振动溶剂化变色的描述中表现优于 ACSFs。