Sepulveda-Montaño Laura X, Galindo Johan F, Kuroda Daniel G
Department of Chemistry, Louisiana State University Baton Rouge Louisiana 70803 USA
Department of Chemistry, Universidad Nacional de Colombia Sede Bogotá Bogotá 111321 Colombia.
Chem Sci. 2024 Aug 13;15(35):14440-8. doi: 10.1039/d4sc03219e.
The molecular interactions and dynamics of complex liquid solutions are now routinely measured using IR and 2DIR spectroscopy. In particular, the use of the latter allows the determination of the frequency fluctuation correlation function (FFCF), while the former provides us with the average frequency. In turn, the FFCF can be used to quantify the vibrational dynamics of a molecule in a solution, and the center frequency provides details about the chemical environment, solvatochromism, of the vibrational mode. In simple solutions, the IR methodology can be used to unambiguously assign the interactions and dynamics observed by a molecule in solution. However, in complex environments with molecular heterogeneities, this assignment is not simple. Therefore, a method that allows for such an assignment is essential. Here, a parametrization free method, called Instantaneous Frequencies of Molecules or IFM, is presented. The IFM method, when coupled to classical molecular simulations, can predict the FFCF of a molecule in solutions. Here, -methylacetamide (NMA) in seven different chemical environments, both simple and complex, is used to test this new method. The results show good agreement with experiments for the NMA solvatochromism and FFCF dynamics, including characteristic times and amplitudes of fluctuations. In addition, the new method shows equivalent or improved results when compared to conventional frequency maps. Overall, the use of the new method in conjunction with molecular dynamics simulations allows unlocking the full potential of IR spectroscopy to generate molecular maps from vibrational observables, capable of describing the interaction landscape of complex molecular systems.
目前,复杂液体溶液的分子相互作用和动力学通常使用红外光谱和二维红外光谱进行测量。特别是,二维红外光谱的使用能够确定频率涨落相关函数(FFCF),而红外光谱则为我们提供平均频率。反过来,FFCF可用于量化溶液中分子的振动动力学,中心频率则提供有关振动模式的化学环境即溶剂化显色作用的详细信息。在简单溶液中,红外方法可用于明确确定溶液中分子所观察到的相互作用和动力学。然而,在存在分子异质性的复杂环境中,这种确定并不简单。因此,一种能够进行这种确定的方法至关重要。在此,提出了一种无参数化方法,称为分子瞬时频率(IFM)。IFM方法与经典分子模拟相结合时,能够预测溶液中分子的FFCF。这里,使用处于七种不同化学环境(包括简单和复杂环境)中的N-甲基乙酰胺(NMA)来测试这种新方法。结果表明,在NMA溶剂化显色作用和FFCF动力学方面,包括涨落的特征时间和幅度,该方法与实验结果吻合良好。此外,与传统频率图相比,新方法显示出相当或更好的结果。总体而言,将这种新方法与分子动力学模拟结合使用,能够充分发挥红外光谱的潜力,从振动可观测量生成分子图谱,从而描述复杂分子系统的相互作用态势。