Suppr超能文献

组蛋白样核小体结构蛋白 (H-NS) 同源物 StpA 激活大肠杆菌中针对自然转化的 I-E 型 CRISPR-Cas 系统。

Histone-like Nucleoid-Structuring Protein (H-NS) Paralogue StpA Activates the Type I-E CRISPR-Cas System against Natural Transformation in Escherichia coli.

机构信息

College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China

College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.

出版信息

Appl Environ Microbiol. 2020 Jul 2;86(14). doi: 10.1128/AEM.00731-20.

Abstract

Working mechanisms of CRISPR-Cas systems have been intensively studied. However, far less is known about how they are regulated. The histone-like nucleoid-structuring protein H-NS binds the promoter of genes (P ) and suppresses the type I-E CRISPR-Cas system in Although the H-NS paralogue StpA also binds P , its role in regulating the CRISPR-Cas system remains unidentified. Our previous work established that is able to take up double-stranded DNA during natural transformation. Here, we investigated the function of StpA in regulating the type I-E CRISPR-Cas system against natural transformation of We first documented that although the activated type I-E CRISPR-Cas system, due to deletion, interfered with CRISPR-Cas-targeted plasmid transfer, inactivation restored the level of natural transformation. Second, we showed that inactivating reduced the transcriptional activity of P Third, by comparing transcriptional activities of the intact P and the P with a disrupted H-NS binding site in the and null deletion mutants, we demonstrated that StpA activated transcription of genes by binding to the same site as H-NS in P Fourth, by expressing StpA with an arabinose-inducible promoter, we confirmed that StpA expressed at a low level stimulated the activity of P Finally, by quantifying the level of mature CRISPR RNA (crRNA), we demonstrated that StpA was able to promote the amount of crRNA. Taken together, our work establishes that StpA serves as a transcriptional activator in regulating the type I-E CRISPR-Cas system against natural transformation of StpA is normally considered a molecular backup of the nucleoid-structuring protein H-NS, which was reported as a transcriptional repressor of the type I-E CRISPR-Cas system in However, the role of StpA in regulating the type I-E CRISPR-Cas system remains elusive. Our previous work uncovered a new route for double-stranded DNA (dsDNA) entry during natural transformation of In this study, we show that StpA plays a role opposite to that of its paralogue H-NS in regulating the type I-E CRISPR-Cas system against natural transformation of Our work not only expands our knowledge on CRISPR-Cas-mediated adaptive immunity against extracellular nucleic acids but also sheds new light on understanding the complex regulation mechanism of the CRISPR-Cas system. Moreover, the finding that paralogues StpA and H-NS share a DNA binding site but play opposite roles in transcriptional regulation indicates that higher-order compaction of bacterial chromatin by histone-like proteins could switch prokaryotic transcriptional modes.

摘要

CRISPR-Cas 系统的工作机制已得到深入研究。然而,人们对它们的调控方式知之甚少。组蛋白样核结构蛋白 H-NS 结合在基因的启动子(P )上,并抑制 I 型-E CRISPR-Cas 系统。尽管 H-NS 类似物 StpA 也结合 P ,但其在调控 CRISPR-Cas 系统中的作用仍未确定。我们之前的工作已经确定,在自然转化过程中, 能够摄取双链 DNA。在这里,我们研究了 StpA 在调节 I 型-E CRISPR-Cas 系统以对抗 的自然转化中的作用。我们首先记录到,由于 缺失,激活的 I 型-E CRISPR-Cas 系统干扰了 CRISPR-Cas 靶向质粒的转移,但 失活恢复了自然转化的水平。其次,我们表明,失活 降低了 P 的转录活性。第三,通过比较完整的 P 和 P 与 H-NS 结合位点被破坏的 P 的转录活性,我们证明 StpA 通过与 P 中的 H-NS 结合相同的位点来激活 基因的转录。第四,通过用阿拉伯糖诱导启动子表达 StpA,我们证实了在低水平表达的 StpA 刺激 P 的活性。最后,通过定量成熟的 CRISPR RNA(crRNA)的水平,我们证明了 StpA 能够促进 crRNA 的数量。总之,我们的工作确立了 StpA 作为一种转录激活剂,在调节 I 型-E CRISPR-Cas 系统以对抗 的自然转化中发挥作用。StpA 通常被认为是核结构蛋白 H-NS 的分子备份,在 中被报道为 I 型-E CRISPR-Cas 系统的转录抑制剂。然而,StpA 在调节 I 型-E CRISPR-Cas 系统中的作用仍不清楚。我们之前的工作揭示了 在自然转化过程中双链 DNA(dsDNA)进入的新途径。在这项研究中,我们表明 StpA 在调节 I 型-E CRISPR-Cas 系统以对抗 的自然转化中发挥的作用与它的类似物 H-NS 相反。我们的工作不仅扩展了我们对 CRISPR-Cas 介导的针对细胞外核酸的适应性免疫的认识,也为理解 CRISPR-Cas 系统的复杂调控机制提供了新的线索。此外,发现类似物 StpA 和 H-NS 共享一个 DNA 结合位点,但在转录调控中发挥相反的作用,这表明组蛋白样蛋白对细菌染色质的更高阶紧凑化可以切换原核转录模式。

相似文献

2
StpA represses CRISPR-Cas immunity in H-NS deficient Escherichia coli.
Biochimie. 2020 Jul;174:136-143. doi: 10.1016/j.biochi.2020.04.020. Epub 2020 Apr 28.
4
YdgT, the Hha paralogue in Escherichia coli, forms heteromeric complexes with H-NS and StpA.
Mol Microbiol. 2004 Oct;54(1):251-63. doi: 10.1111/j.1365-2958.2004.04268.x.
7
Differential effects and interactions of endogenous and horizontally acquired H-NS-like proteins in pathogenic Escherichia coli.
Mol Microbiol. 2010 Jan;75(2):280-93. doi: 10.1111/j.1365-2958.2009.06995.x. Epub 2009 Dec 4.
8
Investigation of the self-association and hetero-association interactions of H-NS and StpA from Enterobacteria.
Mol Microbiol. 2009 Jul;73(2):165-79. doi: 10.1111/j.1365-2958.2009.06754.x. Epub 2009 Jun 8.
9
Differential dependence of StpA on H-NS in autoregulation of stpA and in regulation of bgl.
J Bacteriol. 2006 Oct;188(19):6728-38. doi: 10.1128/JB.00586-06.

引用本文的文献

1
Phage-mediated horizontal transfer of virulence genes with regulatory feedback from the host.
Imeta. 2025 May 20;4(4):e70042. doi: 10.1002/imt2.70042. eCollection 2025 Aug.
2
Bacterial DNA involvement in carcinogenesis.
Front Cell Infect Microbiol. 2022 Oct 12;12:996778. doi: 10.3389/fcimb.2022.996778. eCollection 2022.
3
The convergent xenogeneic silencer MucR predisposes α-proteobacteria to integrate AT-rich symbiosis genes.
Nucleic Acids Res. 2022 Aug 26;50(15):8580-8598. doi: 10.1093/nar/gkac664.
4
Involvement of the Histone-Like Nucleoid Structuring Protein (H-NS) in Natural Transformation.
Pathogens. 2021 Aug 26;10(9):1083. doi: 10.3390/pathogens10091083.
5
Digging into the lesser-known aspects of CRISPR biology.
Int Microbiol. 2021 Nov;24(4):473-498. doi: 10.1007/s10123-021-00208-7. Epub 2021 Sep 6.

本文引用的文献

1
StpA represses CRISPR-Cas immunity in H-NS deficient Escherichia coli.
Biochimie. 2020 Jul;174:136-143. doi: 10.1016/j.biochi.2020.04.020. Epub 2020 Apr 28.
2
Selective loading and processing of prespacers for precise CRISPR adaptation.
Nature. 2020 Mar;579(7797):141-145. doi: 10.1038/s41586-020-2018-1. Epub 2020 Feb 19.
3
Structural basis for osmotic regulation of the DNA binding properties of H-NS proteins.
Nucleic Acids Res. 2020 Feb 28;48(4):2156-2172. doi: 10.1093/nar/gkz1226.
4
Mechanisms of DNA Uptake by Naturally Competent Bacteria.
Annu Rev Genet. 2019 Dec 3;53:217-237. doi: 10.1146/annurev-genet-112618-043641. Epub 2019 Aug 21.
5
Mechanisms of Type I-E and I-F CRISPR-Cas Systems in .
EcoSal Plus. 2019 Feb;8(2). doi: 10.1128/ecosalplus.ESP-0008-2018.
6
H-NS uses an autoinhibitory conformational switch for environment-controlled gene silencing.
Nucleic Acids Res. 2019 Mar 18;47(5):2666-2680. doi: 10.1093/nar/gky1299.
7
Pull in and Push Out: Mechanisms of Horizontal Gene Transfer in Bacteria.
Front Microbiol. 2018 Sep 6;9:2154. doi: 10.3389/fmicb.2018.02154. eCollection 2018.
9
Structure basis for RNA-guided DNA degradation by Cascade and Cas3.
Science. 2018 Jul 6;361(6397). doi: 10.1126/science.aat0839. Epub 2018 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验