Suppr超能文献

基于空间约束混合模型的组织病理学图像染色的无类别加权归一化。

Class-Agnostic Weighted Normalization of Staining in Histopathology Images Using a Spatially Constrained Mixture Model.

出版信息

IEEE Trans Med Imaging. 2020 Nov;39(11):3355-3366. doi: 10.1109/TMI.2020.2992108. Epub 2020 Oct 28.

Abstract

The colorless biopsied tissue samples are usually stained in order to visualize different microscopic structures for diagnostic purposes. But color variations associated with the process of sample preparation, usage of raw materials, diverse staining protocols, and using different slide scanners may adversely influence both visual inspection and computer-aided image analysis. As a result, many methods are proposed for histopathology image stain normalization in recent years. In this study, we introduce a novel approach for stain normalization based on learning a mixture of multivariate skew-normal distributions for stain clustering and parameter estimation alongside a stain transformation technique. The proposed method, labeled "Class-Agnostic Weighted Normalization" (short CLAW normalization), has the ability to normalize a source image by learning the color distribution of both source and target images within an expectation-maximization framework. The novelty of this approach is its flexibility to quantify the underlying both symmetric and nonsymmetric distributions of the different stain components while it is considering the spatial information. The performance of this new stain normalization scheme is tested on several publicly available digital pathology datasets to compare it against state-of-the-art normalization algorithms in terms of ability to preserve the image structure and information. All in all, our proposed method performed superior more consistently in comparison with existing methods in terms of information preservation, visual quality enhancement, and boosting computer-aided diagnosis algorithm performance.

摘要

无色活检组织样本通常经过染色,以便为诊断目的可视化不同的微观结构。但是,与样本制备过程、原材料使用、不同的染色方案以及使用不同的载玻片扫描仪相关的颜色变化可能会对视觉检查和计算机辅助图像分析产生不利影响。因此,近年来提出了许多用于组织病理学图像染色归一化的方法。在本研究中,我们提出了一种基于学习多元偏斜正态分布混合的新方法,用于染色聚类和参数估计,以及染色转换技术。所提出的方法标记为“无类别的加权归一化”(CLAW 归一化),具有通过在期望最大化框架内学习源和目标图像的颜色分布来归一化源图像的能力。这种方法的新颖之处在于它能够在考虑空间信息的同时量化不同染色成分的潜在对称和非对称分布。我们在几个公开可用的数字病理学数据集上测试了这种新的染色归一化方案,以根据其保留图像结构和信息的能力与最先进的归一化算法进行比较。总的来说,与现有的方法相比,我们提出的方法在信息保留、视觉质量增强和提高计算机辅助诊断算法性能方面表现更优,更为一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验