Dpto. Ciencias de la Computación e Inteligencia Artificial, Universidad de Granada, Spain.
Dept. of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA.
Comput Med Imaging Graph. 2022 Apr;97:102048. doi: 10.1016/j.compmedimag.2022.102048. Epub 2022 Feb 15.
Stain variation between images is a main issue in the analysis of histological images. These color variations, produced by different staining protocols and scanners in each laboratory, hamper the performance of computer-aided diagnosis (CAD) systems that are usually unable to generalize to unseen color distributions. Blind color deconvolution techniques separate multi-stained images into single stained bands that can then be used to reduce the generalization error of CAD systems through stain color normalization and/or stain color augmentation. In this work, we present a Bayesian modeling and inference blind color deconvolution framework based on the K-Singular Value Decomposition algorithm. Two possible inference procedures, variational and empirical Bayes are presented. Both provide the automatic estimation of the stain color matrix, stain concentrations and all model parameters. The proposed framework is tested on stain separation, image normalization, stain color augmentation, and classification problems.
图像之间的颜色变化是组织学图像分析中的一个主要问题。这些颜色变化是由每个实验室中不同的染色方案和扫描仪产生的,这阻碍了计算机辅助诊断 (CAD) 系统的性能,这些系统通常无法推广到未见的颜色分布。盲色反卷积技术将多染色图像分离成单个染色带,然后可以通过染色颜色归一化和/或染色颜色增强来减少 CAD 系统的泛化误差。在这项工作中,我们提出了一种基于 K-奇异值分解算法的贝叶斯建模和推理盲色反卷积框架。提出了两种可能的推理过程,变分和经验贝叶斯。这两种方法都提供了对染色颜色矩阵、染色浓度和所有模型参数的自动估计。所提出的框架在染色分离、图像归一化、染色颜色增强和分类问题上进行了测试。