Suppr超能文献

SMAN:用于跨模态图像-文本检索的堆叠多模态注意力网络。

SMAN: Stacked Multimodal Attention Network for Cross-Modal Image-Text Retrieval.

出版信息

IEEE Trans Cybern. 2022 Feb;52(2):1086-1097. doi: 10.1109/TCYB.2020.2985716. Epub 2022 Feb 16.

Abstract

This article focuses on tackling the task of the cross-modal image-text retrieval which has been an interdisciplinary topic in both computer vision and natural language processing communities. Existing global representation alignment-based methods fail to pinpoint the semantically meaningful portion of images and texts, while the local representation alignment schemes suffer from the huge computational burden for aggregating the similarity of visual fragments and textual words exhaustively. In this article, we propose a stacked multimodal attention network (SMAN) that makes use of the stacked multimodal attention mechanism to exploit the fine-grained interdependencies between image and text, thereby mapping the aggregation of attentive fragments into a common space for measuring cross-modal similarity. Specifically, we sequentially employ intramodal information and multimodal information as guidance to perform multiple-step attention reasoning so that the fine-grained correlation between image and text can be modeled. As a consequence, we are capable of discovering the semantically meaningful visual regions or words in a sentence which contributes to measuring the cross-modal similarity in a more precise manner. Moreover, we present a novel bidirectional ranking loss that enforces the distance among pairwise multimodal instances to be closer. Doing so allows us to make full use of pairwise supervised information to preserve the manifold structure of heterogeneous pairwise data. Extensive experiments on two benchmark datasets demonstrate that our SMAN consistently yields competitive performance compared to state-of-the-art methods.

摘要

本文专注于解决跨模态图像-文本检索任务,这是计算机视觉和自然语言处理领域的一个交叉学科课题。现有的基于全局表示对齐的方法无法准确识别图像和文本的语义有意义部分,而局部表示对齐方案则因需要全面聚合视觉片段和文本单词的相似性而面临巨大的计算负担。在本文中,我们提出了一种堆叠多模态注意网络(SMAN),它利用堆叠多模态注意机制来挖掘图像和文本之间的细粒度相关性,从而将注意力片段的聚合映射到一个共同的空间中,以衡量跨模态相似性。具体来说,我们依次使用单模态信息和多模态信息作为指导,进行多步注意力推理,从而可以对图像和文本之间的细粒度相关性进行建模。因此,我们能够发现句子中语义有意义的视觉区域或单词,从而更准确地衡量跨模态相似性。此外,我们提出了一种新颖的双向排序损失,强制对两两多模态实例之间的距离更近。这样做可以充分利用成对监督信息来保留异构成对数据的流形结构。在两个基准数据集上的广泛实验表明,与最先进的方法相比,我们的 SMAN 始终能够获得有竞争力的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验