King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, 150 Stamford Street, London, SE1 9NH, UK.
Unilever Colworth Science Park, Bedfordshire, UK.
Free Radic Biol Med. 2020 Aug 1;155:49-57. doi: 10.1016/j.freeradbiomed.2020.04.024. Epub 2020 May 7.
UVA irradiation of human dermal fibroblasts and endothelial cells induces an immediate transient increase in cytosolic Fe(II), as monitored by the fluorescence Fe(II) reporters, FeRhonox1 in cytosol and MitoFerroGreen in mitochondria. Both superoxide dismutase (SOD) inhibition by tetrathiomolybdate (ATM) and catalase inhibition by 3-amino-1, 2, 4-triazole (ATZ) increase and prolong the cytosolic Fe(II) signal after UVA irradiation. SOD inhibition with ATM also increases mitochondrial Fe(II). Thus, mitochondria do not source the UV-dependent increase in cytosolic Fe(II), but instead reflect and amplify raised cytosolic labile Fe(II) concentration. Hence control of cytosolic ferritin iron release is key to preventing UVA-induced inflammation. UVA irradiation also increases dermal endothelial cell HO, as monitored by the adenovirus vector Hyper-DAAO-NES(HyPer). These UVA-dependent changes in intracellular Fe(II) and HO are mirrored by increases in cell superoxide, monitored with the luminescence probe L-012. UV-dependent increases in cytosolic Fe(II), HO and L-012 chemiluminescence are prevented by ZnCl (10 μM), an effective inhibitor of Fe(II) transport via ferritin's 3-fold channels. Quercetin (10 μM), a potent membrane permeable Fe(II) chelator, abolishes the cytosolic UVA-dependent FeRhonox1, Fe(II) and HyPer, HO and increase in MitoFerroGreen Fe(II) signals. The time course of the quercetin-dependent decrease in endothelial HO correlates with the decrease in FeRhox1 signal and both signals are fully suppressed by preloading cells with ZnCl. These results confirm that antioxidant enzyme activity is the key factor in controlling intracellular iron levels, and hence maintenance of cell antioxidant capacity is vitally important in prevention of skin aging and inflammation initiated by labile iron and UVA.
UVA 辐射人类真皮成纤维细胞和内皮细胞会导致细胞质中游离态 Fe(II)浓度瞬时增加,这可以通过细胞质中的荧光 Fe(II)报告分子 FeRhonox1 和线粒体中的 MitoFerroGreen 来监测。超氧化物歧化酶 (SOD) 抑制剂四硫钼酸盐 (Tetrathiomolybdate, ATM) 和过氧化氢酶抑制剂 3-氨基-1,2,4-三唑 (3-amino-1,2,4-triazole, ATZ) 都能增加并延长 UVA 辐射后的细胞质游离态 Fe(II)信号。ATM 抑制 SOD 也会增加线粒体中的游离态 Fe(II)。因此,线粒体不是 UVA 依赖性细胞质游离态 Fe(II)增加的来源,而是反映和放大细胞质中可利用的游离态 Fe(II)浓度。因此,控制细胞质铁蛋白中铁的释放是防止 UVA 诱导炎症的关键。UVA 辐射还会增加真皮内皮细胞中的 HO,这可以通过腺病毒载体 Hyper-DAAO-NES(HyPer)来监测。细胞内游离态 Fe(II)和 HO 的这些 UVA 依赖性变化与用发光探针 L-012 监测到的细胞超氧阴离子的增加相对应。用锌离子 (10 μM),一种有效的通过铁蛋白 3 倍通道转运 Fe(II)的抑制剂,可以预防 ZnCl 依赖的细胞质游离态 Fe(II)、HO 和 L-012 化学发光的增加。栎精(10 μM),一种有效的膜通透的 Fe(II)螯合剂,可以消除细胞质中依赖 UVA 的 FeRhonox1、Fe(II)和 HyPer、HO 和 MitoFerroGreen 中 Fe(II)信号的增加。栎精依赖性 HO 减少的时间过程与 FeRhox1 信号的减少相关,这两种信号都可以通过预先用 ZnCl 加载细胞来完全抑制。这些结果证实抗氧化酶活性是控制细胞内铁水平的关键因素,因此维持细胞抗氧化能力对于防止由不稳定铁和 UVA 引发的皮肤衰老和炎症至关重要。