Experimental Psychology and Methods, University of Leipzig, 04109, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany.
Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany; Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, 14195, Berlin, Germany.
Neuroimage. 2020 Aug 15;217:116908. doi: 10.1016/j.neuroimage.2020.116908. Epub 2020 May 6.
Somatosensory stimulation intensity and behavioral detection are positively related, and both correlate with neural responses. However, it is still controversial as to what extent stimulus intensity and early somatosensory evoked potentials (SEP) predict detection and how these parameters interact with pre-stimulus brain oscillatory states, which also influence sensory processing. Here we investigated how early SEP components encode stimulation intensity, how pre-stimulus alpha- and beta-band amplitudes interact with SEPs, and which neural markers predict stimulus detection. To this end, we randomly presented electrical finger nerve stimulation with various intensities distributed along the individual psychometric response function (including catch trials) while recording the EEG. Participants reported stimulus presence on a trial-by-trial basis (one-alternative-forced-choice). For the lowest (imperceptible) intensities, participants showed zero (behavioral) sensitivity despite measurable early cortical processing reflected by the P50 component. The P50 amplitude scaled with increasing stimulation intensities but was not predictive of stimulus detection. Instead, detection was associated with the later negative N150 component, as well as with pre-stimulus lowered somatosensory alpha- and increased frontal beta-band amplitudes. Our results give evidence for a serial representation of stimulus intensity and detection, as reflected by the P50 and N150 amplitude, respectively. Furthermore, stimulus detection seems to depend on the current brain state, rendering upcoming stimulation being reportable or not.
躯体感觉刺激强度与行为检测呈正相关,两者均与神经反应相关。然而,刺激强度和早期体感诱发电位(SEP)在多大程度上预测检测,以及这些参数如何与预刺激脑振荡状态相互作用,这些状态也会影响感觉处理,这些问题仍存在争议。在这里,我们研究了早期 SEP 成分如何编码刺激强度,预刺激的 alpha 和 beta 频带振幅如何与 SEP 相互作用,以及哪些神经标记物可以预测刺激检测。为此,我们在记录脑电图的同时,随机呈现各种强度的电手指神经刺激,这些刺激强度沿着个体心理物理反应函数分布(包括捕获试验)。参与者在每次试验的基础上报告刺激的存在(单项强迫选择)。对于最低(不可察觉)的强度,尽管 P50 成分反映了可测量的早期皮质处理,但参与者表现出零(行为)敏感性。P50 振幅随刺激强度的增加而增加,但不能预测刺激检测。相反,检测与后期负性 N150 成分以及预刺激时降低的体感 alpha 和增加的额部 beta 频带振幅相关。我们的结果为刺激强度和检测的顺序表示提供了证据,分别反映在 P50 和 N150 振幅上。此外,刺激检测似乎取决于当前的大脑状态,从而使即将到来的刺激变得可报告或不可报告。