Chen Ruige, Wei Xiaoli, Liu Fawang, Anh Vo V
School of Science, China University of Geosciences, Beijing 100083, People's Republic of China.
Sichuan University of Science and Engineering, Sichuan 643000, People's Republic of China.
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190538. doi: 10.1098/rsta.2019.0538. Epub 2020 May 11.
In this paper, searching for a better chloride ions sub-diffusion system, a multi-term time-fractional derivative diffusion model is proposed for the description of the time-dependent chloride ions penetration in reinforced concrete structures exposed to chloride environments. We prove the stability and convergence of the model. We use the modified grid approximation method (MGAM) to estimate the fractional orders and chloride ions diffusion coefficients in the reinforced concrete for the multi-term time fractional diffusion system. And then to verify the efficiency and accuracy of the proposed methods in dealing with the fractional inverse problem, two numerical examples with real data are investigated. Meanwhile, we use two methods of fixed chloride ions diffusion coefficient and variable diffusion coefficient with diffusion depth to simulate chloride ions sub-diffusion system. The result shows that with the new fractional orders and parameters, our multi-term fractional order chloride ions sub-diffusion system is capable of providing numerical results that agree better with the real data than other models. On the other hand, it is also noticed from the numerical solution of the chloride ions sub-diffusion system that setting the variable diffusion coefficient with diffusion depth is more reasonable. And it is also found that chloride ions diffusion coefficients in reinforced concrete should be decreased with diffusion depth which is completely consistent with the theory. In addition, the model can be used to predict the chloride profiles with a time-dependent property. This article is part of the theme issue 'Advanced materials modelling via fractional calculus: challenges and perspectives'.
本文旨在寻找一种更好的氯离子亚扩散系统,提出了一种多阶时间分数阶导数扩散模型,用于描述暴露于氯化物环境中的钢筋混凝土结构中氯离子随时间的渗透情况。我们证明了该模型的稳定性和收敛性。对于多阶时间分数阶扩散系统,我们使用改进的网格近似方法(MGAM)来估计钢筋混凝土中的分数阶和氯离子扩散系数。然后,为了验证所提出方法处理分数阶反问题的效率和准确性,研究了两个具有实际数据的数值例子。同时,我们使用固定氯离子扩散系数和随扩散深度变化的扩散系数这两种方法来模拟氯离子亚扩散系统。结果表明,通过新的分数阶和参数,我们的多阶分数阶氯离子亚扩散系统能够提供比其他模型更符合实际数据的数值结果。另一方面,从氯离子亚扩散系统的数值解中还可以注意到,设置随扩散深度变化的扩散系数更为合理。并且还发现,钢筋混凝土中的氯离子扩散系数应随扩散深度而降低,这与理论完全一致。此外,该模型可用于预测具有时间依赖性的氯离子分布。本文是主题为“通过分数阶微积分进行先进材料建模:挑战与展望”的一部分。