Yuan Xiuhua, Sun Xia, Zhou Huawei, Zeng Suyuan, Liu Bingxin, Li Xia, Liu Dong
School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng, China.
Department of Chemistry, Liaocheng University, Liaocheng, China.
Front Chem. 2020 Apr 23;8:311. doi: 10.3389/fchem.2020.00311. eCollection 2020.
While bismuth vanadate (BiVO) has emerged as a promising photoanode in solar water splitting, it still suffers from poor electron-hole separation and electron transport properties. Therefore, the development of BiVO nanomaterials that enable performing high charge transfer rate at the interface and lowering charge recombination is urgent needed. Herein, cobalt borate (Co-B) nanoparticle arrays anchored on electrospun W-doped BiVO porous nanotubes (BiVWO) was prepared for photoelectrochemical (PEC) water oxidation. One-dimensional, free-standing and porousBiVWO/Co-B nanotubes was synthesized through electrospun and electrodeposition process. BiVWO/Co-B arrays exhibit a unique self-supporting core-shell structure with rough porous surface, providing abundant conductive cofactor (W) and electrochemically active sites (Co) exposed to the electrolyte. When applied to PEC water oxidation. BiVWO/Co-B modified FTO electrode displays high incident photon-to-current conversion efficiency (IPCE) of 33% at 405 nm (at 1.23 V vs. RHE) and its photocurrent density is about 4 times to the pristine nanotube. The higher PEC water oxidation properties of BiVWO/Co-B porous nanotubes may be attributed to the effectively suppress the electron-hole recombination at electrolyte interface due to its self-supporting core-shell structure, the high electrocatalytic activity of Co and the good electrical conductivity of BiVWO arrays. This work offers a simple preparation strategy for the integrated Co-B nanoparticle with BiVWO nanotube, demonstrating the synergistic effect of co-catalysts for PEC water oxidation.
虽然钒酸铋(BiVO)已成为太阳能水分解中一种有前景的光阳极,但其仍存在电子 - 空穴分离和电子传输性能较差的问题。因此,迫切需要开发能够在界面处实现高电荷转移速率并降低电荷复合的BiVO纳米材料。在此,制备了锚定在电纺W掺杂BiVO多孔纳米管(BiVWO)上的硼酸钴(Co - B)纳米颗粒阵列用于光电化学(PEC)水氧化。通过电纺和电沉积工艺合成了一维、自立式且多孔的BiVWO/Co - B纳米管。BiVWO/Co - B阵列呈现出具有粗糙多孔表面的独特自立式核壳结构,提供了丰富的导电辅助因子(W)和暴露于电解质的电化学活性位点(Co)。当应用于PEC水氧化时,BiVWO/Co - B修饰的FTO电极在405 nm处(相对于可逆氢电极,在1.23 V时)显示出33%的高入射光子到电流转换效率(IPCE),其光电流密度约为原始纳米管的4倍。BiVWO/Co - B多孔纳米管较高的PEC水氧化性能可能归因于其自立式核壳结构有效地抑制了电解质界面处的电子 - 空穴复合、Co的高电催化活性以及BiVWO阵列的良好导电性。这项工作为将Co - B纳米颗粒与BiVWO纳米管集成提供了一种简单的制备策略,证明了共催化剂对PEC水氧化的协同效应。