Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria México, 04510, Distrito Federal de México, México.
Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, km 14.5 Carrera Toluca-Atlacomulco, Campus UAEMex "El Rosedal" San Cayetano-Toluca, 50200 Toluca de Lerdo, Estado de México, México.
Inorg Chem. 2020 Jun 1;59(11):7739-7751. doi: 10.1021/acs.inorgchem.0c00777. Epub 2020 May 11.
Guanosine triphosphate (GTP) is a key biomarker of multiple cellular processes and human diseases. The new fluorescent dinuclear complex [Zn(L)(S)][OTf], (asymmetric ligand, L = 5,8-Bis{[bis(2-pyridylmethyl)amino] methyl}quinoline, S = solvent, and OTf = triflate anion) was synthesized and studied in-depth as a chemosensor for nucleoside polyphosphates and inorganic anions in pure water. Additions at neutral pH of nucleoside triphosphates, guanosine diphosphate, guanosine monophosphate, and pyrophosphate (PPi) to quench its blue emission (λ = 410 nm) with a pronounced selectivity toward GTP over other anions, including adenosine triphosphate (ATP), uridine triphosphate (UTP), and cytidine triphosphate (CTP). The efficient quenching response by the addition of GTP was observed in the presence of coexisting species in blood plasma and urine with a detection limit of 9.2 μmol L. GTP also shows much tighter binding to the receptor on a micromolar level. On the basis of multiple spectroscopic tools (H, P NMR, UV-vis, and fluorescence) and DFT calculations, the binding mode is proposed through three-point recognition involving the simultaneous coordination of the N atom of the guanosine motif and two phosphate groups to the two Zn(II) atoms. Spectroscopic studies, MS-ESI, and DFT suggested that GTP bound to in 1:1 and 2:2 models with high overall binding constants of log β = 6.05 ± 0.01 and log β = 10.91 ± 0.03, respectively. The optical change and selectivity are attributed to the efficient binding of GTP to by the combination of a strong electrostatic contribution and synergic effects of coordination bonds. Such GTP selectivity of an asymmetric metal-based receptor in water is still rare.
三磷酸鸟苷 (GTP) 是多种细胞过程和人类疾病的关键生物标志物。新的荧光双核配合物 [Zn(L)(S)][OTf],(不对称配体,L = 5,8-双{[双(2-吡啶基甲基)氨基]甲基}喹啉,S = 溶剂,OTf = 三氟甲磺酸根阴离子)在纯水中作为核苷多磷酸盐和无机阴离子的化学传感器被深入合成和研究。在中性 pH 下,核苷三磷酸、鸟苷二磷酸、鸟苷单磷酸和焦磷酸(PPi)的加入会猝灭其蓝色发射(λ = 410nm),对 GTP 具有明显的选择性,超过其他阴离子,包括腺苷三磷酸(ATP)、尿苷三磷酸(UTP)和胞苷三磷酸(CTP)。在存在共存物质的情况下,GTP 的加入会观察到有效猝灭响应,在血液和尿液中的检测限为 9.2μmol L。GTP 与受体的结合也更为紧密,在微摩尔水平上。基于多种光谱工具(H、P NMR、UV-vis 和荧光)和 DFT 计算,提出了通过三点识别的结合模式,涉及鸟嘌呤基序的 N 原子和两个磷酸基团同时与两个 Zn(II) 原子配位。光谱研究、MS-ESI 和 DFT 表明,GTP 以 1:1 和 2:2 两种模型与 结合,总结合常数分别为 log β = 6.05 ± 0.01 和 log β = 10.91 ± 0.03。光学变化和选择性归因于 GTP 与 之间的有效结合,这是由强静电贡献和配位键协同效应的结合所致。在水中,这种不对称金属基受体对 GTP 的选择性仍然很少见。