Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany.
Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany.
Curr Protoc Nucleic Acid Chem. 2020 Jun;81(1):e108. doi: 10.1002/cpnc.108.
Nucleoside triphosphates (NTPs) are essential biomolecules involved in almost all biological processes, and their study is therefore critical to understanding cellular biology. Here, we describe a chemical synthesis suitable for obtaining both natural and highly modified NTPs, which can, for example, be used as surrogates to probe biological processes. The approach includes the preparation of a reagent that enables the facile introduction and modification of three phosphate units: cyclic pyrophosphoryl P-amidite (c-PyPA), derived from pyrophosphate (P ) and a reactive phosphoramidite (P ). By using non-hydrolyzable analogues of pyrophosphate, the reagent can be readily modified to obtain a family of non-hydrolyzable analogues containing CH , CF , CCl , and NH that are stable in solution for several weeks if stored appropriately. They enable the synthesis of NTPs by reaction with nucleosides to give deoxycyclotriphosphate esters that are then oxidized to cyclotriphosphate (cyclo-TP) esters. The use of different oxidizing agents provides an opportunity for modification at P-α. Furthermore, terminal modifications at P-γ can be introduced by linearization of the cyclo-TP ester with various nucleophiles. © 2020 The Authors. Basic Protocol 1: Synthesis of cyclic pyrophosphoryl P-amidite (c-PyPA) and derivatives (c-Py PA, c-Py PA, c-Py PA, c-Py PA) Basic Protocol 2: Synthesis of 3'-azidothymidine 5'-γ-P-propargylamido triphosphates and analogues Basic Protocol 3: Synthesis of 2'-deoxythymidine 5'-γ-P-propargylamido triphosphate (15) Basic Protocol 4: Synthesis of adenosine 5'-γ-P-amido triphosphate (19) and adenosine 5'-γ-P-propargylamido triphosphate (20) Basic Protocol 5: Synthesis of d4T 5'-γ-propargylamido β,γ-(difluoromethylene)triphosphate Support Protocol: Synthesis of diisopropylphosphoramidous dichloride.
核苷三磷酸 (NTPs) 是参与几乎所有生物过程的必需生物分子,因此对其研究对于理解细胞生物学至关重要。在这里,我们描述了一种适合获得天然和高度修饰的 NTPs 的化学合成方法,这些 NTPs 可以用作探针生物过程的替代物。该方法包括制备一种试剂,该试剂能够方便地引入和修饰三个磷酸单元:环状焦磷酸基 P-酰胺(c-PyPA),由焦磷酸(P )和反应性磷酰胺(P )衍生而来。通过使用不可水解的焦磷酸盐类似物,该试剂可以很容易地进行修饰,以获得一系列稳定的不可水解类似物,这些类似物在适当储存的情况下在溶液中可稳定数周。它们通过与核苷反应生成脱氧环三磷酸酯,然后将其氧化为环三磷酸酯(环-TP)酯,从而实现 NTPs 的合成。使用不同的氧化剂为 P-α 提供了修饰的机会。此外,通过用各种亲核试剂线性化环-TP 酯,可以在 P-γ 引入末端修饰。 2020 年作者。基本方案 1:环状焦磷酸基 P-酰胺(c-PyPA)及其衍生物(c-PyPA、c-PyPA、c-PyPA、c-PyPA)的合成基本方案 2:3'-叠氮胸苷 5'-γ-P-丙炔酰胺三磷酸及其类似物的合成基本方案 3:2'-脱氧胸苷 5'-γ-P-丙炔酰胺三磷酸(15)的合成基本方案 4:腺苷 5'-γ-P-酰胺三磷酸(19)和腺苷 5'-γ-P-丙炔酰胺三磷酸(20)的合成基本方案 5:d4T 5'-γ-丙炔酰胺 β,γ-(二氟亚甲基)三磷酸的合成支持方案:二异丙基磷酰胺二氯的合成。