Suppr超能文献

关键片段 R3 tau 蛋白错误折叠机制的研究:分子动力学模拟与马科夫状态模型的联合研究。

The misfolding mechanism of the key fragment R3 of tau protein: a combined molecular dynamics simulation and Markov state model study.

机构信息

School of Pharmacy, Lanzhou University, Lanzhou 730000, China.

出版信息

Phys Chem Chem Phys. 2020 May 21;22(19):10968-10980. doi: 10.1039/c9cp06954b. Epub 2020 May 11.

Abstract

The formation of neurofibrillary tangles (NFT) by abnormal aggregation of misfolded microtubule-associated protein tau is a hallmark of tauopathies, including Alzheimer's disease. However, it remains unclear how tau monomers undergo conformational changes and further lead to the abnormal aggregation. In this work, molecular dynamics simulation combined with the Markov state model (MSM) analysis was used to uncover the misfolding progress and structural characteristics of the key R3 fragment of tau protein at the atomic level. The simulation results show that R3 exists in disordered structures mainly, which is consistent with the experimental results. The MSM analysis identified multiple β-sheet conformations of R3. The residues involved in the β-sheet structure formation are mainly located in three regions: PHF6 at the N-terminal, S324 to N327 at the middle of R3, and K331 to G334 at the C-terminal. In addition, the path analysis of the formation of the β-sheet structure by transition path theory (TPT) revealed that there are multiple paths to form β-sheet structures from the disordered state, and the timescales are at the millisecond level, indicating that a large number of structural rearrangements occur during the formation of β-sheet structures. It is interesting to note that S19 is a critical intermediate state for the formation of two target β-sheet structures, S23 and S4. In S19, three regions of V306 to K311, C322 to G326, and K331 to G334 form a turn structure, the regions that form the β-sheet structure in target states S23 and S4, indicating that the formation of a turn structure is necessary to form a β-sheet structure and then the turn structure will eventually transform into the β-sheet structure through key hydrogen bonding interactions. These findings can provide insights into the kinetics of tau protein misfolding.

摘要

神经原纤维缠结(NFT)的形成是tau 蛋白异常聚集的标志,这种异常聚集是包括阿尔茨海默病在内的 tau 病的特征。然而,tau 单体如何发生构象变化,进一步导致异常聚集,目前仍不清楚。在这项工作中,使用分子动力学模拟结合马尔可夫状态模型(MSM)分析,从原子水平揭示了 tau 蛋白关键 R3 片段的错误折叠过程和结构特征。模拟结果表明,R3 主要存在于无规卷曲结构中,这与实验结果一致。MSM 分析确定了 R3 的多个β-折叠构象。形成β-折叠结构的残基主要位于三个区域:N 端的 PHF6、R3 中部的 S324 到 N327 和 C 端的 K331 到 G334。此外,通过过渡态理论(TPT)对β-折叠结构形成的路径分析表明,从无规卷曲状态形成β-折叠结构有多种途径,时间尺度在毫秒级,表明在β-折叠结构形成过程中发生了大量的结构重排。有趣的是,S19 是形成两个目标β-折叠结构 S23 和 S4 的关键中间状态。在 S19 中,V306 到 K311、C322 到 G326 和 K331 到 G334 三个区域形成一个转角结构,这是目标状态 S23 和 S4 中形成β-折叠结构的区域,表明转角结构的形成是形成β-折叠结构所必需的,然后转角结构最终通过关键氢键相互作用转化为β-折叠结构。这些发现可以为 tau 蛋白错误折叠的动力学提供深入了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验