Suppr超能文献

COVID-19:生成和应用本地建模的传播和发病影响,以提供全科医学实践粒度上总体相对医疗资源影响变化的估计。

COVID-19: Generate and apply local modelled transmission and morbidity effects to provide an estimate of the variation in overall relative healthcare resource impact at general practice granularity.

机构信息

Res Consortium, Andover, Hampshire, UK.

The Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.

出版信息

Int J Clin Pract. 2020 Sep;74(9):e13533. doi: 10.1111/ijcp.13533. Epub 2020 Jun 23.

Abstract

INTRODUCTION

Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the name given to the 2019 novel coronavirus. COVID-19 is the name given to the disease associated with the virus. SARS-CoV-2 is a new strain of coronavirus not been previously identified in humans.

METHODS

Two key factors, case incidence and case morbidity, were analysed for England. When taken together they give an estimate of relative demand on healthcare utilisation. To analyse case incidence, the latest values for indicators that could be associated with infection transmission rates were collected from the Office of National Statistics (ONS) and Quality Outcome Framework (QOF) sources. These included population density, %age >16, at fulltime work/education, %age over 60, %BME ethnicity, social deprivation as IMD2019, location as latitude/longitude, and patient engagement as %self-confident in their own long-term condition management. Average case morbidity was calculated. To provide a comparative measure of overall healthcare resource impact, individual GP practice impact scores were compared against the median practice.

RESULTS

The case incidence regression is a dynamic situation but it currently shows that Urban, %Working, and age >60 were the strongest determinants of case incidence. The local population comorbidity remains unchanged. The range of relative healthcare impact was wide with 80% of practices falling at 20%-250% of the national median. Once practice population numbers were included we found that the top 33% of GP practices supporting 45% of the patient population would require 68% of COVID-19 healthcare resources. The model provides useful information about the relative impact of Covid-19 on healthcare workload at GP practice granularity in all parts of England.

CONCLUSION

Covid-19 is impacting on the utilisation of health/social care resources across the world. This model provides a way of predicting relative local levels of disease burden based on defined criteria, thereby providing a method for targeting limited care resources to optimise national/regional/local responses to the COVID-19 outbreak.

摘要

简介

急性呼吸综合征冠状病毒 2 型(SARS-CoV-2)是对 2019 年新型冠状病毒的命名。COVID-19 是与该病毒相关疾病的名称。SARS-CoV-2 是一种新型冠状病毒,以前未在人类中发现。

方法

对英格兰的两个关键因素,即病例发生率和病例发病率进行了分析。当它们一起使用时,可以估计对医疗保健利用的相对需求。为了分析病例发生率,从国家统计局(ONS)和质量成果框架(QOF)来源收集了可能与感染传播率相关的最新指标值。这些指标包括人口密度、全职工作/教育的 16 岁以上人口比例、60 岁以上人口比例、少数民族人口比例、社会贫困程度(按 IMD2019 衡量)、地理位置(按纬度/经度)以及患者对自身长期病情管理的自我信心程度。计算了平均病例发病率。为了提供对整体医疗资源影响的比较衡量标准,将各个体医生实践影响评分与中位数实践进行了比较。

结果

病例发生率回归是一个动态情况,但目前表明城市、工作人口比例和 60 岁以上人口比例是病例发生率的最强决定因素。当地人群的合并症保持不变。相对医疗保健影响的范围很广,80%的实践在全国中位数的 20%-250%之间。一旦包含实践人群数量,我们发现支持 45%患者人群的前 33%的个体医生实践将需要 68%的 COVID-19 医疗资源。该模型提供了有关英格兰各地个体医生实践中 COVID-19 对医疗工作负荷的相对影响的有用信息。

结论

COVID-19 正在影响全球的卫生/社会保健资源的利用。该模型提供了一种根据定义标准预测当地疾病负担相对水平的方法,从而为优化国家/地区/地方对 COVID-19 爆发的应对提供了有限的护理资源的靶向方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验