Suppr超能文献

1-卤代碳硼烷中的氢键与卤键

Hydrogen vs. Halogen Bonds in 1-Halo--Carboranes.

作者信息

Alkorta Ibon, Elguero Jose, Oliva-Enrich Josep M

机构信息

Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain.

Instituto de Química-Física "Rocasolano", CSIC, Serrano, 119, E-28006 Madrid, Spain.

出版信息

Materials (Basel). 2020 May 7;13(9):2163. doi: 10.3390/ma13092163.

Abstract

A theoretical study of the hydrogen bond (HB) and halogen bond (XB) complexes between 1-halo--carboranes and hydrogen cyanide (NCH) as HB and XB probe has been carried out at the MP2 computational level. The energy results show that the HB complexes are more stable than the XBs for the same system, with the exception of the isoenergetic iodine derivatives. The analysis of the electron density with the quantum theory of atoms in molecules (QTAIM) shows the presence of a unique intermolecular bond critical point with the typical features of weak noncovalent interactions (small values of the electron density and positive Laplacian and total energy density). The natural energy decomposition analysis (NEDA) of the complexes shows that the HB and XB complexes are dominated by the charge-transfer and polarization terms, respectively. The work has been complemented with a search in the CSD database of analogous complexes and the comparison of the results, with those of the 1-halobenzene:NCH complexes showing smaller binding energies and larger intermolecular distances as compared to the 1-halo--carboranes:NCH complexes.

摘要

以1-卤代碳硼烷与氰化氢(NCH)作为氢键(HB)和卤键(XB)探针,在MP2计算水平上对它们之间的氢键和卤键配合物进行了理论研究。能量结果表明,对于同一体系,除了等能的碘衍生物外,氢键配合物比卤键配合物更稳定。利用分子中的原子量子理论(QTAIM)对电子密度进行分析,结果表明存在一个独特的分子间键临界点,具有弱非共价相互作用的典型特征(电子密度值小、拉普拉斯算子为正以及总能量密度)。对配合物的自然能量分解分析(NEDA)表明,氢键和卤键配合物分别以电荷转移和极化项为主导。这项工作通过在CSD数据库中搜索类似配合物并比较结果得到了补充,与1-卤代苯:NCH配合物相比,1-卤代碳硼烷:NCH配合物的结合能更小,分子间距离更大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9500/7254210/4ee9218d9c64/materials-13-02163-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验