Shi Yifang, Choi Jee Woong, Xu Lei, Kim Hyung June, Ullah Ihsan, Khan Uzair
School of Automation, Hangzhou Dianzi University, Xiasha Higher Education Zone, 2rd Street, Hangzhou 310018, China.
Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Korea.
Sensors (Basel). 2020 May 7;20(9):2671. doi: 10.3390/s20092671.
In the multiple asynchronous bearing-only (BO) sensors tracking system, there usually exist two main challenges: (1) the presence of clutter measurements and the target misdetection due to imperfect sensing; (2) the out-of-sequence (OOS) arrival of locally transmitted information due to diverse sensor sampling interval or internal processing time or uncertain communication delay. This paper simultaneously addresses the two problems by proposing a novel distributed tracking architecture consisting of the local tracking and central fusion. To get rid of the kinematic state unobservability problem in local tracking for a single BO sensor scenario, we propose a novel local integrated probabilistic data association (LIPDA) method for target measurement state tracking. The proposed approach enables eliminating most of the clutter measurement disturbance with increased target measurement accuracy. In the central tracking, the fusion center uses the proposed distributed IPDA-forward prediction fusion and decorrelation (DIPDA-FPFD) approach to sequentially fuse the OOS information transmitted by each BO sensor. The track management is carried out at local sensor level and also at the fusion center by using the recursively calculated probability of target existence as a track quality measure. The efficiency of the proposed methodology was validated by intensive numerical experiments.
在多异步纯方位(BO)传感器跟踪系统中,通常存在两个主要挑战:(1)由于传感不完善导致杂波测量的存在和目标误检测;(2)由于不同的传感器采样间隔、内部处理时间或不确定的通信延迟,本地传输信息的乱序(OOS)到达。本文通过提出一种由本地跟踪和中心融合组成的新型分布式跟踪架构,同时解决了这两个问题。为了消除单个BO传感器场景下本地跟踪中的运动状态不可观测问题,我们提出了一种用于目标测量状态跟踪的新型本地集成概率数据关联(LIPDA)方法。所提出的方法能够消除大部分杂波测量干扰,提高目标测量精度。在中心跟踪中,融合中心使用所提出的分布式IPDA前向预测融合和解相关(DIPDA-FPFD)方法,依次融合每个BO传感器传输的OOS信息。通过使用递归计算的目标存在概率作为跟踪质量度量,在本地传感器级别以及融合中心进行跟踪管理。通过大量数值实验验证了所提方法的有效性。