HM-CINAC, Hospital Universitario HM Puerta del Sur, Fundación de Investigación HM Hospitales, Madrid, Spain.
Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.
Eur J Neurosci. 2021 Apr;53(7):2398-2413. doi: 10.1111/ejn.14777. Epub 2020 Jul 31.
Dopamine replacement therapy with L-DOPA remains the most widely prescribed treatment for Parkinson disease. However, prolonged treatment due to disease progression frequently causes unwanted motor movements known as levodopa-induced dyskinesias. Previous studies have established that alterations to the efferent circuitry of the striatum, a principal component of the basal ganglia, are in part responsible for the pathological motor consequences of prolonged levodopa treatment. While the role of the striatal direct pathway is widely accepted, the engagement of the striatal indirect pathway in dyskinetic pathophysiology is still under consideration. However, recent investigations have finally shown that the activity of both striatal pathways changes as a consequence of dopamine depletion and dyskinetic behavioural conditions. In addition, it has been reported that drug-induced structural alterations to indirect pathway medium spiny neurons, together with associated changes in synaptic plasticity and firing patterns, could contribute importantly to the development of dyskinesia. These findings, together with recent opto- and chemogenetic studies, suggest that a critical imbalance in the activity between both striatal pathways is sufficient to cause dyskinesia in both rodent and primate models of Parkinson disease. In animal models, and in human patients, dyskinetic behaviours elicited by this efferent pathway imbalance can be achieved even in the absence of dopamine denervation. In this review, we summarize recent and past findings to better understand this complex pathology with the aim of pursuing specific cell-type therapies to re-balance efferent striatal activity.
左旋多巴替代疗法仍然是治疗帕金森病最广泛应用的治疗方法。然而,由于疾病的进展,长期的治疗常常导致不想要的运动运动,称为左旋多巴诱导的运动障碍。先前的研究已经确定,纹状体传出回路的改变,纹状体是基底神经节的主要组成部分,部分是长期左旋多巴治疗导致病理性运动后果的原因。虽然纹状体直接途径的作用已被广泛接受,但纹状体间接途径在运动障碍病理生理学中的参与仍在考虑之中。然而,最近的研究终于表明,多巴胺耗竭和运动障碍行为条件下,两条纹状体途径的活性都发生了变化。此外,据报道,间接途径中型多棘神经元的药物诱导结构改变,以及突触可塑性和放电模式的相关变化,可能对运动障碍的发展有重要贡献。这些发现,以及最近的光遗传学和化学遗传学研究,表明两条纹状体途径之间的活性的关键失衡足以导致帕金森病的啮齿动物和灵长类动物模型中的运动障碍。在动物模型和人类患者中,即使没有多巴胺神经切断,这种传出通路失衡引起的运动障碍行为也可以被诱发。在这篇综述中,我们总结了最近和过去的发现,以更好地理解这种复杂的病理学,旨在追求特定的细胞类型治疗,以重新平衡传出纹状体的活性。