Suppr超能文献

气态质子化和碱金属阳离子化 G-C 碱基对的振动光谱和计算研究。

A vibrational spectroscopic and computational study of gaseous protonated and alkali metal cationized G-C base pairs.

机构信息

Department of Chemistry, Memorial University, St. John's, NL A1B 3X7, Canada.

出版信息

Phys Chem Chem Phys. 2020 May 28;22(20):11546-11557. doi: 10.1039/d0cp00069h. Epub 2020 May 12.

Abstract

The structures and properties of metal cationized complexes of 9-ethylguanine (9eG) and 1-methylcytosine (1mC), (9eG:1mC)M, where M = Li, Na, K, Rb, Cs as well as the protonated complex, (9eG:1mC)H, have been studied using a combination of IRMPD spectroscopy and computational methods. For (9eG:1mC)H, the dominant structure is a Hoogsteen type complex with the proton covalently bound to N3 of 1mC despite this being the third best protonation site of the two bases; based on proton affinities N7 of 9eG should be protonated. However, this structural oddity can be explained considering both the number of hydrogen bonds that can be formed when N3 of 1mC is protonated as well as the strong ion-induced dipole interaction that exists between an N3 protonated 1mC and 9eG due to the higher polarizability of 9eG. The anomalous dissociation of (9eG:1mC)H, forming much more (1mC)H than would be predicted based on the computed thermochemistry, can be explained as being due to the structural oddity of the protonation site and that the barrier to proton transfer from N3 of 1mC to N7 of 9eG grows dramatically as the base pair begins to dissociate. For the (9eG:1mC)M; M = Li, Na, K, Rb, Cs complexes, single unique structures could not be assigned. However, the experimental spectra were consistent with the computed spectra. For (9eG:1mC)Li, the lowest energy structure is one in which Li is bound to O6 of 9eG and both O2 and N3 of 1mC; there is also an interbase hydrogen bond from the amine of 1mC to N7 of 9eG. For Na, K, and Rb, similar binding of the metal cation to 1mC is calculated but, unlike Li, the lowest energy structure is one in which the metal cation is bound to N7 of 9eG; there is also an interbase hydrogen bond between the amine of 1mC and the carbonyl of 9eG. The lowest energy structure for the Cs complex is the Watson-Crick type base pairing with Cs binding only to 9eG through O6 and N7 and with three hydrogen bonds between 9eG and 1mC. It also interesting to note that the Watson-Crick base pairing structure gets lower in Gibbs energy relative to the lowest energy complexes as the metal gets larger. This indicates that the smaller, more densely charged cations have a greater propensity to interfere with Watson-Crick base pairing than do the larger, less densely charged metal cations.

摘要

已经使用红外分子光电离光谱和计算方法研究了 9-乙基鸟嘌呤(9eG)和 1-甲基胞嘧啶(1mC)(9eG:1mC)M 的金属阳离子化配合物的结构和性质,其中 M = Li、Na、K、Rb、Cs 以及质子化配合物(9eG:1mC)H。对于(9eG:1mC)H,尽管这是两个碱基中第三个最佳的质子化位点,但主要结构是 Hoogsteen 型配合物,质子与 1mC 的 N3 共价结合;基于质子亲和力,9eG 的 N7 应该被质子化。然而,考虑到当 1mC 的 N3 被质子化时可以形成的氢键数量以及由于 9eG 的极化率较高而存在于 N3 质子化的 1mC 和 9eG 之间的强离子诱导偶极相互作用,这种结构上的奇异现象是可以解释的。(9eG:1mC)H 的异常解离,形成的(1mC)H 比根据计算热力学预测的要多得多,可以解释为由于质子化位点的结构奇异以及从 1mC 的 N3 到 9eG 的 N7 的质子转移势垒随着碱基对的解离而急剧增加。对于(9eG:1mC)M;M = Li、Na、K、Rb、Cs 配合物,无法分配单个独特的结构。然而,实验光谱与计算光谱一致。对于(9eG:1mC)Li,最低能量结构是一个将 Li 与 9eG 的 O6 结合,同时将 O2 和 1mC 的 N3 结合的结构;1mC 的氨基与 9eG 的 N7 之间也存在碱基间氢键。对于 Na、K 和 Rb,计算出金属阳离子对 1mC 的类似结合,但与 Li 不同的是,最低能量结构是一个将金属阳离子与 9eG 的 N7 结合的结构;1mC 的氨基与 9eG 的羰基之间也存在碱基间氢键。Cs 配合物的最低能量结构是 Watson-Crick 型碱基配对,Cs 通过 O6 和 N7 仅与 9eG 结合,9eG 和 1mC 之间有三个氢键。还值得注意的是,随着金属尺寸的增加,Watson-Crick 碱基配对结构的吉布斯自由能降低相对于最低能量配合物。这表明,与较大的、较少带电的金属阳离子相比,较小的、更密集带电的阳离子更有可能干扰 Watson-Crick 碱基配对。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验