Suppr超能文献

基于飞秒紫外泵浦/中红外探测光谱及含从头算非谐耦合的模型模拟的叠氮基钴(II)配合物的振动弛豫动力学

Vibrational Relaxation Dynamics of an Azido-Cobalt(II) Complex from Femtosecond UV-Pump/MIR-Probe Spectroscopy and Model Simulations with Ab Initio Anharmonic Couplings.

作者信息

Straub Steffen, Stubbe Jessica, Lindner Jörg, Sarkar Biprajit, Vöhringer Peter

机构信息

Lehrstuhl für Molekulare Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115 Bonn, Germany.

Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/34, 14195 Berlin, Germany.

出版信息

Inorg Chem. 2020 Oct 19;59(20):14629-14642. doi: 10.1021/acs.inorgchem.0c00553. Epub 2020 May 12.

Abstract

Vibrational energy relaxation is of critical importance for the light-controlled reactivity of transition-metal complexes. In time-resolved optical spectroscopies, it gives rise to pronounced spectral redistributions with complex band shifts and thus to nonexponential kinetics, all of which are very difficult to quantify. Here we study the vibrational relaxation dynamics of a pentacoordinated azido-cobalt(II) complex in liquid solution following its ultrafast charge-transfer excitation in the near-ultraviolet (UV). The complex is photochemically remarkably stable and returns within the experimental time resolution back to its quartet electronic ground state via internal conversion. The nonadiabatic transition effectively instantaneously converts the entire photon energy into kinetic energy of the vibrational degrees of freedom. The ensuing relaxation dynamics of the vibrationally highly excited complex are monitored as a function of time using femtosecond mid-infrared (MIR) spectroscopy in the antisymmetric stretching region of the azido ligand and occur on a time scale of a few tens of picoseconds. The dynamic evolution of the MIR spectrum due to vibrational cooling of the complex can be understood quantitatively within the framework of an anharmonic coupling model, which relies on an intramolecular cubic/quartic force field from density functional theory combined with second-order vibrational perturbation theory. The simulations suggest that the primary internal conversion preferentially dumps the excess energy into the low-frequency bending modes of the azido ligand, whereas its high-frequency stretching modes are barely affected by the initial nonadiabatic transition. Surprisingly, the two bending vibrations appear to relax independently of one another, each with its own characteristic cooling time.

摘要

振动能量弛豫对于过渡金属配合物的光控反应性至关重要。在时间分辨光谱学中,它会导致明显的光谱重新分布以及复杂的谱带移动,从而产生非指数动力学,所有这些都很难进行量化。在此,我们研究了五配位叠氮钴(II)配合物在近紫外(UV)超快电荷转移激发后在液体溶液中的振动弛豫动力学。该配合物在光化学上非常稳定,并在实验时间分辨率内通过内转换回到其四重态电子基态。非绝热跃迁有效地瞬间将整个光子能量转化为振动自由度的动能。使用飞秒中红外(MIR)光谱在叠氮配体的反对称拉伸区域监测振动高度激发的配合物随后的弛豫动力学,其发生时间尺度为几十皮秒。由于配合物的振动冷却导致的MIR光谱的动态演化可以在非谐耦合模型的框架内进行定量理解,该模型依赖于密度泛函理论的分子内立方/四次力场与二阶振动微扰理论相结合。模拟结果表明,主要的内转换优先将多余的能量倾倒入叠氮配体的低频弯曲模式中,而其高频拉伸模式几乎不受初始非绝热跃迁的影响。令人惊讶的是,这两个弯曲振动似乎彼此独立弛豫,各自具有自己的特征冷却时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验