Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
Environ Sci Technol. 2020 Jun 2;54(11):6978-6986. doi: 10.1021/acs.est.0c01427. Epub 2020 May 20.
Recent studies show that the surface morphology of a thin film composite (TFC) polyamide membrane depends strongly on its porous substrate. Nevertheless, the underlining mechanisms and the effects on membrane separation performance remain controversial. To dissect the exact role of pore properties, we synthesized TFC polyamide membranes on polycarbonate substrates with cylindrical track-etched pores (PCTE) of well-defined pore size ranging from 10 to 800 nm. Leaf-like roughness features were most prominent for polyamide films formed on substrates of intermediate pore sizes (80 and 100 nm). Smaller pores inhibited leaf-like features as a result of insufficient storage of -phenylenediamine (MPD) monomers for the interfacial reaction, whereas larger pores resulted in diminished surface roughness due to the lack of confinement to the interfacially degassed nanobubbles. Substrate porosity plays a critical role on membrane water permeability, while smaller pores with greater pore density are favored to improve membrane rejection. TFC polyamide membranes prepared on sponge-like poly(ether sulfone) and polysulfone substrates exhibit better water permeability and salt rejection compared to the PCTE-TFC membranes thanks to the simultaneously enhanced confinement and MPD storage effects. The mechanistic insights gained in this study reveal the huge potential of substrate design toward high-performance TFC RO membranes.
最近的研究表明,薄膜复合(TFC)聚酰胺膜的表面形态强烈依赖于其多孔基底。然而,其潜在机制和对膜分离性能的影响仍存在争议。为了剖析孔特性的确切作用,我们在具有圆柱状刻蚀孔(PCTE)的聚碳酸酯基底上合成了 TFC 聚酰胺膜,这些孔的孔径从 10 到 800nm 可精确调控。对于中间孔径(80nm 和 100nm)的基底上形成的聚酰胺膜,具有最明显的叶状粗糙度特征。较小的孔由于 -苯二胺(MPD)单体的储存不足而抑制了叶状特征,不利于界面反应,而较大的孔由于缺乏对界面脱气纳米气泡的限制,导致表面粗糙度降低。基底孔隙率对膜水渗透性起着关键作用,而具有更大孔密度的较小孔有利于提高膜的截留率。与 PCTE-TFC 膜相比,基于海绵状聚醚砜和聚砜基底的 TFC 聚酰胺膜由于同时增强了限制作用和 MPD 储存效应,因此表现出更好的水渗透性和盐截留率。本研究获得的机理见解揭示了基底设计在高性能 TFC RO 膜中的巨大潜力。