Suppr超能文献

基于信息约束分段非负矩阵部分协同因子分解的喘鸣音分离。

Wheezing Sound Separation Based on Informed Inter-Segment Non-Negative Matrix Partial Co-Factorization.

机构信息

Departament of Telecommunication Engineering, University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, 23700 Linares, Jaen, Spain.

出版信息

Sensors (Basel). 2020 May 8;20(9):2679. doi: 10.3390/s20092679.

Abstract

Wheezing reveals important cues that can be useful in alerting about respiratory disorders, such as Chronic Obstructive Pulmonary Disease. Early detection of wheezing through auscultation will allow the physician to be aware of the existence of the respiratory disorder in its early stage, thus minimizing the damage the disorder can cause to the subject, especially in low-income and middle-income countries. The proposed method presents an extended version of Non-negative Matrix Partial Co-Factorization (NMPCF) that eliminates most of the acoustic interference caused by normal respiratory sounds while preserving the wheezing content needed by the physician to make a reliable diagnosis of the subject's airway status. This extension, called Informed Inter-Segment NMPCF (IIS-NMPCF), attempts to overcome the drawback of the conventional NMPCF that treats all segments of the spectrogram equally, adding greater importance for signal reconstruction of repetitive sound events to those segments where wheezing sounds have not been detected. Specifically, IIS-NMPCF is based on a bases sharing process in which inter-segment information, informed by a wheezing detection system, is incorporated into the factorization to reconstruct a more accurate modelling of normal respiratory sounds. Results demonstrate the significant improvement obtained in the wheezing sound quality by IIS-NMPCF compared to the conventional NMPCF for all the Signal-to-Noise Ratio (SNR) scenarios evaluated, specifically, an SDR, SIR and SAR improvement equals 5.8 dB, 4.9 dB and 7.5 dB evaluating a noisy scenario with SNR = -5 dB.

摘要

喘鸣揭示了重要线索,可用于提醒呼吸疾病,如慢性阻塞性肺疾病。通过听诊早期发现喘鸣,医生可以在疾病早期就意识到其存在,从而将疾病对患者造成的损害降到最低,特别是在低收入和中等收入国家。所提出的方法是对非负矩阵部分共因子分解(NMPCF)的扩展,该方法消除了正常呼吸声引起的大部分声学干扰,同时保留了医生进行可靠诊断所需的喘鸣内容,以评估患者气道状态。这种扩展,称为信息片段间 NMPCF(IIS-NMPCF),试图克服传统 NMPCF 的一个缺点,即传统 NMPCF 平等对待声谱图的所有片段,而对重复声音事件的信号重建添加了更大的重要性,而这些片段没有检测到喘鸣声。具体来说,IIS-NMPCF 基于一种基共享过程,其中由喘鸣检测系统提供信息的片段间信息被纳入到因子分解中,以重建对正常呼吸声更准确的建模。结果表明,与传统的 NMPCF 相比,IIS-NMPCF 显著提高了喘鸣声音质量,对于所有评估的信噪比(SNR)场景,特别是在 SNR = -5dB 的嘈杂场景中,SDR、SIR 和 SAR 分别提高了 5.8dB、4.9dB 和 7.5dB。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc37/7249056/ec1954bd9765/sensors-20-02679-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验