文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于体内治疗诊断的双磁核壳结构CoFeO@MnFeO纳米颗粒

Bi-Magnetic Core-Shell CoFeO@MnFeO Nanoparticles for In Vivo Theranostics.

作者信息

Nica Valentin, Caro Carlos, Páez-Muñoz Jose Maria, Leal Manuel Pernia, Garcia-Martin Maria Luisa

机构信息

BIONAND-Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga), Parque Tecnológico de Andalucía, 29590 Málaga, Spain.

Department of Physics, "Alexandru Ioan Cuza" University of Iasi, 700506 Iasi, Romania.

出版信息

Nanomaterials (Basel). 2020 May 8;10(5):907. doi: 10.3390/nano10050907.


DOI:10.3390/nano10050907
PMID:32397243
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7279505/
Abstract

In this work, we report the synthesis and characterization of three magnetic nanosystems, CoFeO, CoFeO@ZnFeO, and CoFeO@MnFeO, which were developed as potential theranostic agents for magnetic hyperthermia and magnetic resonance imaging (MRI). These nanosystems have been thoroughly characterized by X-ray Diffraction (XRD), Transmission Electron Miscroscopy (TEM), Dark Field-TEM (DF-TEM), Vibrating Sample Magnetometry (VSM), and inductive heating, in order to elucidate their structure, morphology, and magnetic properties. The bi-magnetic CoFeO@ZnFeO and CoFeO@MnFeO nanoparticles (NPs) exhibited a core-shell structure with a mean average particle size of 11.2 ± 1.4 nm and 14.4 ± 2.4 nm, respectively. The CoFeO@MnFeO NPs showed the highest specific absorption rate (SAR) values (210-320 W/g) upon exposure to an external magnetic field, along with the highest saturation magnetization (Ms). Therefore, they were selected for functionalization with the PEGylated ligand to make them stable in aqueous media. After the functionalization process, the NPs showed high magnetic relaxivity values and very low cytotoxicity, demonstrating that CoFeO@MnFeO is a good candidate for in vivo applications. Finally, in vivo MRI experiments showed that PEGylated CoFeO@MnFeO NPs produce high contrast and exhibit very good stealth properties, leading to the efficient evasion of the mononuclear phagocyte system. Thus, these bi-magnetic core-shell NPs show great potential as theranostic agents for in vivo applications, combining magnetic hyperthermia capabilities with high MRI contrast.

摘要

在本研究中,我们报告了三种磁性纳米系统CoFeO、CoFeO@ZnFeO和CoFeO@MnFeO的合成与表征,它们被开发为用于磁热疗和磁共振成像(MRI)的潜在诊疗剂。这些纳米系统已通过X射线衍射(XRD)、透射电子显微镜(TEM)、暗场TEM(DF-TEM)、振动样品磁强计(VSM)和感应加热进行了全面表征,以阐明其结构、形态和磁性。双磁性CoFeO@ZnFeO和CoFeO@MnFeO纳米颗粒(NPs)呈现核壳结构,平均粒径分别为11.2±1.4nm和14.4±2.4nm。CoFeO@MnFeO NPs在暴露于外部磁场时显示出最高的比吸收率(SAR)值(210-320W/g),以及最高的饱和磁化强度(Ms)。因此,它们被选择用聚乙二醇化配体进行功能化,以使其在水性介质中稳定。功能化过程后,NPs显示出高磁弛豫率值和非常低的细胞毒性,表明CoFeO@MnFeO是体内应用的良好候选物。最后,体内MRI实验表明,聚乙二醇化CoFeO@MnFeO NPs产生高对比度并表现出非常好的隐身性能,从而有效地逃避单核吞噬细胞系统。因此,这些双磁性核壳NPs作为体内应用的诊疗剂具有巨大潜力,将磁热疗能力与高MRI对比度相结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/fd46a54dc13a/nanomaterials-10-00907-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/92a3a71fb0e6/nanomaterials-10-00907-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/9742946f1b8b/nanomaterials-10-00907-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/18a15b96862d/nanomaterials-10-00907-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/af30c4386951/nanomaterials-10-00907-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/8d336f745a53/nanomaterials-10-00907-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/acc16dc19f84/nanomaterials-10-00907-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/039de499cbdf/nanomaterials-10-00907-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/edeb46f35f2b/nanomaterials-10-00907-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/1058336355c3/nanomaterials-10-00907-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/fd46a54dc13a/nanomaterials-10-00907-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/92a3a71fb0e6/nanomaterials-10-00907-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/9742946f1b8b/nanomaterials-10-00907-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/18a15b96862d/nanomaterials-10-00907-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/af30c4386951/nanomaterials-10-00907-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/8d336f745a53/nanomaterials-10-00907-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/acc16dc19f84/nanomaterials-10-00907-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/039de499cbdf/nanomaterials-10-00907-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/edeb46f35f2b/nanomaterials-10-00907-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/1058336355c3/nanomaterials-10-00907-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/7279505/fd46a54dc13a/nanomaterials-10-00907-g010.jpg

相似文献

[1]
Bi-Magnetic Core-Shell CoFeO@MnFeO Nanoparticles for In Vivo Theranostics.

Nanomaterials (Basel). 2020-5-8

[2]
Porous MnFeO-decorated PB nanocomposites: a new theranostic agent for boosted / MRI-guided synergistic photothermal/magnetic hyperthermia.

RSC Adv. 2018-5-22

[3]
Specific Absorption Rate Dependency on the Co Distribution and Magnetic Properties in CoMnFeO Nanoparticles.

Nanomaterials (Basel). 2021-5-7

[4]
Superparamagnetic cobalt ferrite nanoparticles as contrast agent in MRI: in vitro study.

IET Nanobiotechnol. 2020-7

[5]
Magnetic hyperthermia efficiency and MRI contrast sensitivity of colloidal soft/hard ferrite nanoclusters.

J Colloid Interface Sci. 2017-10-3

[6]
Synthesis, size and magnetic properties of controllable MnFe2O4 nanoparticles with versatile surface functionalities.

Dalton Trans. 2014-7-14

[7]
Multifunctional Core@Shell Magnetic Nanoprobes for Enhancing Targeted Magnetic Resonance Imaging and Fluorescent Labeling in Vitro and in Vivo.

ACS Appl Mater Interfaces. 2017-5-18

[8]
Multifunctional tunable ZnFeO@MnFeO nanoparticles for dual-mode MRI and combined magnetic hyperthermia with radiotherapy treatment.

J Mater Chem B. 2023-2-1

[9]
Manganese Ferrite Nanoparticles (MnFeO): Size Dependence for Hyperthermia and Negative/Positive Contrast Enhancement in MRI.

Nanomaterials (Basel). 2020-11-20

[10]
Novel electrochemical biosensor based on PVP capped CoFeO@CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry.

Biosens Bioelectron. 2016-10-27

引用本文的文献

[1]
Piezoelectric Heterojunctions as Bacteria-Killing Bone-Regenerative Implants.

Adv Mater. 2025-1

[2]
The Promise of Metal-Doped Iron Oxide Nanoparticles as Antimicrobial Agent.

ACS Omega. 2023-12-21

[3]
Illuminating and Radiosensitizing Tumors with 2DG-Bound Gold-Based Nanomedicine for Targeted CT Imaging and Therapy.

Nanomaterials (Basel). 2023-6-2

[4]
Optimization of cobalt ferrite magnetic nanoparticle as a theranostic agent: MRI and hyperthermia.

MAGMA. 2023-10

[5]
Numerical Investigation of Darcy-Forchheimer Hybrid Nanofluid Flow with Energy Transfer over a Spinning Fluctuating Disk under the Influence of Chemical Reaction and Heat Source.

Micromachines (Basel). 2022-12-25

[6]
Engineering Gold Shelled Nanomagnets for Pre-Setting the Operating Temperature for Magnetic Hyperthermia.

Nanomaterials (Basel). 2022-8-12

[7]
Iron-Gold Nanoflowers: A Promising Tool for Multimodal Imaging and Hyperthermia Therapy.

Pharmaceutics. 2022-3-14

[8]
Tailoring Interfacial Exchange Anisotropy in Hard-Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications.

Nanomaterials (Basel). 2022-1-14

[9]
Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation.

Cancers (Basel). 2021-9-12

[10]
Application of Radiosensitizers in Cancer Radiotherapy.

Int J Nanomedicine. 2021

本文引用的文献

[1]
Dual Role of Magnetic Nanoparticles as Intracellular Hotspots and Extracellular Matrix Disruptors Triggered by Magnetic Hyperthermia in 3D Cell Culture Models.

ACS Appl Mater Interfaces. 2018-12-11

[2]
Triggering antitumoural drug release and gene expression by magnetic hyperthermia.

Adv Drug Deliv Rev. 2018-10-17

[3]
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2018-9-12

[4]
Investigating Organ Toxicity Profile of Tenofovir and Tenofovir Nanoparticle on the Liver and Kidney: Experimental Animal Study.

Toxicol Res. 2018-7

[5]
Correlation between particle size/domain structure and magnetic properties of highly crystalline FeO nanoparticles.

Sci Rep. 2017-8-30

[6]
Shedding light on zwitterionic magnetic nanoparticles: limitations for in vivo applications.

Nanoscale. 2017-6-22

[7]
Highly water-stable rare ternary Ag-Au-Se nanocomposites as long blood circulation time X-ray computed tomography contrast agents.

Nanoscale. 2017-6-1

[8]
Manganese-Based Nanogels as pH Switches for Magnetic Resonance Imaging.

Biomacromolecules. 2017-4-14

[9]
Cancer screening in the United States, 2017: A review of current American Cancer Society guidelines and current issues in cancer screening.

CA Cancer J Clin. 2017-2-7

[10]
Ultrathin Interface Regime of Core-Shell Magnetic Nanoparticles for Effective Magnetism Tailoring.

Nano Lett. 2017-1-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索