Nica Valentin, Caro Carlos, Páez-Muñoz Jose Maria, Leal Manuel Pernia, Garcia-Martin Maria Luisa
BIONAND-Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga), Parque Tecnológico de Andalucía, 29590 Málaga, Spain.
Department of Physics, "Alexandru Ioan Cuza" University of Iasi, 700506 Iasi, Romania.
Nanomaterials (Basel). 2020 May 8;10(5):907. doi: 10.3390/nano10050907.
In this work, we report the synthesis and characterization of three magnetic nanosystems, CoFeO, CoFeO@ZnFeO, and CoFeO@MnFeO, which were developed as potential theranostic agents for magnetic hyperthermia and magnetic resonance imaging (MRI). These nanosystems have been thoroughly characterized by X-ray Diffraction (XRD), Transmission Electron Miscroscopy (TEM), Dark Field-TEM (DF-TEM), Vibrating Sample Magnetometry (VSM), and inductive heating, in order to elucidate their structure, morphology, and magnetic properties. The bi-magnetic CoFeO@ZnFeO and CoFeO@MnFeO nanoparticles (NPs) exhibited a core-shell structure with a mean average particle size of 11.2 ± 1.4 nm and 14.4 ± 2.4 nm, respectively. The CoFeO@MnFeO NPs showed the highest specific absorption rate (SAR) values (210-320 W/g) upon exposure to an external magnetic field, along with the highest saturation magnetization (Ms). Therefore, they were selected for functionalization with the PEGylated ligand to make them stable in aqueous media. After the functionalization process, the NPs showed high magnetic relaxivity values and very low cytotoxicity, demonstrating that CoFeO@MnFeO is a good candidate for in vivo applications. Finally, in vivo MRI experiments showed that PEGylated CoFeO@MnFeO NPs produce high contrast and exhibit very good stealth properties, leading to the efficient evasion of the mononuclear phagocyte system. Thus, these bi-magnetic core-shell NPs show great potential as theranostic agents for in vivo applications, combining magnetic hyperthermia capabilities with high MRI contrast.
在本研究中,我们报告了三种磁性纳米系统CoFeO、CoFeO@ZnFeO和CoFeO@MnFeO的合成与表征,它们被开发为用于磁热疗和磁共振成像(MRI)的潜在诊疗剂。这些纳米系统已通过X射线衍射(XRD)、透射电子显微镜(TEM)、暗场TEM(DF-TEM)、振动样品磁强计(VSM)和感应加热进行了全面表征,以阐明其结构、形态和磁性。双磁性CoFeO@ZnFeO和CoFeO@MnFeO纳米颗粒(NPs)呈现核壳结构,平均粒径分别为11.2±1.4nm和14.4±2.4nm。CoFeO@MnFeO NPs在暴露于外部磁场时显示出最高的比吸收率(SAR)值(210-320W/g),以及最高的饱和磁化强度(Ms)。因此,它们被选择用聚乙二醇化配体进行功能化,以使其在水性介质中稳定。功能化过程后,NPs显示出高磁弛豫率值和非常低的细胞毒性,表明CoFeO@MnFeO是体内应用的良好候选物。最后,体内MRI实验表明,聚乙二醇化CoFeO@MnFeO NPs产生高对比度并表现出非常好的隐身性能,从而有效地逃避单核吞噬细胞系统。因此,这些双磁性核壳NPs作为体内应用的诊疗剂具有巨大潜力,将磁热疗能力与高MRI对比度相结合。
Nanomaterials (Basel). 2020-5-8
Nanomaterials (Basel). 2021-5-7
IET Nanobiotechnol. 2020-7
J Colloid Interface Sci. 2017-10-3
ACS Appl Mater Interfaces. 2017-5-18
Nanomaterials (Basel). 2020-11-20
ACS Omega. 2023-12-21
Nanomaterials (Basel). 2023-6-2
Nanomaterials (Basel). 2022-8-12
Pharmaceutics. 2022-3-14
Nanomaterials (Basel). 2022-1-14
Int J Nanomedicine. 2021
Adv Drug Deliv Rev. 2018-10-17
Biomacromolecules. 2017-4-14