Suppr超能文献

基于本体推理的城市固体废物危机风险应对。

Risk Response for Municipal Solid Waste Crisis Using Ontology-Based Reasoning.

机构信息

School of Safety Science and Emergency Management, School of Management, Wuhan University of Technology, Wuhan 430070, China.

School of Management, Wuhan University of Technology, Wuhan 430070, China.

出版信息

Int J Environ Res Public Health. 2020 May 9;17(9):3312. doi: 10.3390/ijerph17093312.

Abstract

Many cities in the world are besieged by municipal solid waste (MSW). MSW not only pollutes the ecological environment but can even induce a series of public safety crises. Risk response for MSW needs novel changes. This paper innovatively adopts the ideas and methods of semantic web ontology to build an ontology-based reasoning system for MSW risk response. Through the integration of crisis information and case resources in the field of MSW, combined with the reasoning ability of Semantic Web Rule Language (SWRL), a system of rule reasoning for risk transformation is constructed. Knowledge extraction and integration of MSW risk response can effectively excavate semantic correlation of crisis information along with key transformation points in the process of crisis evolution through rule reasoning. The results show that rule reasoning of transformation can effectively improve intelligent decision-making regarding MSW risk response.

摘要

世界上许多城市都被城市固体废物(MSW)所困扰。MSW 不仅污染生态环境,甚至还会引发一系列公共安全危机。MSW 的风险应对需要创新变革。本文创新性地采用语义网本体的思想和方法,构建基于本体的 MSW 风险应对推理系统。通过整合 MSW 领域的危机信息和案例资源,结合语义网规则语言(SWRL)的推理能力,构建风险转化的规则推理系统。MSW 风险应对的知识提取和整合可以通过规则推理,有效地挖掘危机信息的语义关联以及危机演变过程中的关键转化点。结果表明,转化的规则推理可以有效地提高 MSW 风险应对的智能决策能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff4/7246749/8526bd459d7f/ijerph-17-03312-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验