Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA.
Int J Mol Sci. 2020 May 9;21(9):3363. doi: 10.3390/ijms21093363.
Mitochondria are well known for their role in ATP production and biosynthesis of macromolecules. Importantly, increasing experimental evidence points to the roles of mitochondrial bioenergetics, dynamics, and signaling in tumorigenesis. Recent studies have shown that many types of cancer cells, including metastatic tumor cells, therapy-resistant tumor cells, and cancer stem cells, are reliant on mitochondrial respiration, and upregulate oxidative phosphorylation (OXPHOS) activity to fuel tumorigenesis. Mitochondrial metabolism is crucial for tumor proliferation, tumor survival, and metastasis. Mitochondrial OXPHOS dependency of cancer has been shown to underlie the development of resistance to chemotherapy and radiotherapy. Furthermore, recent studies have demonstrated that elevated heme synthesis and uptake leads to intensified mitochondrial respiration and ATP generation, thereby promoting tumorigenic functions in non-small cell lung cancer (NSCLC) cells. Also, lowering heme uptake/synthesis inhibits mitochondrial OXPHOS and effectively reduces oxygen consumption, thereby inhibiting cancer cell proliferation, migration, and tumor growth in NSCLC. Besides metabolic changes, mitochondrial dynamics such as fission and fusion are also altered in cancer cells. These alterations render mitochondria a vulnerable target for cancer therapy. This review summarizes recent advances in the understanding of mitochondrial alterations in cancer cells that contribute to tumorigenesis and the development of drug resistance. It highlights novel approaches involving mitochondria targeting in cancer therapy.
线粒体在 ATP 产生和大分子生物合成方面的作用是众所周知的。重要的是,越来越多的实验证据表明线粒体生物能学、动力学和信号转导在肿瘤发生中的作用。最近的研究表明,许多类型的癌细胞,包括转移性肿瘤细胞、耐药性肿瘤细胞和癌症干细胞,都依赖于线粒体呼吸,并上调氧化磷酸化(OXPHOS)活性来促进肿瘤发生。线粒体代谢对肿瘤增殖、肿瘤存活和转移至关重要。已经表明,癌症对线粒体 OXPHOS 的依赖性是化疗和放疗耐药性发展的基础。此外,最近的研究表明,升高的血红素合成和摄取导致增强的线粒体呼吸和 ATP 生成,从而促进非小细胞肺癌(NSCLC)细胞中的致癌功能。此外,降低血红素摄取/合成抑制线粒体 OXPHOS,并有效地减少耗氧量,从而抑制 NSCLC 中的癌细胞增殖、迁移和肿瘤生长。除了代谢变化,癌细胞中线粒体动力学(如分裂和融合)也发生改变。这些改变使线粒体成为癌症治疗的一个脆弱靶点。本综述总结了近年来对促进肿瘤发生和耐药性发展的癌细胞中线粒体改变的理解的最新进展。它强调了涉及癌症治疗中线粒体靶向的新方法。