Suppr超能文献

利用机器学习改进药物发现中的集成对接。

Using machine learning to improve ensemble docking for drug discovery.

机构信息

Department of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri-St. Louis, Saint Louis, Missouri, USA.

出版信息

Proteins. 2020 Oct;88(10):1263-1270. doi: 10.1002/prot.25899. Epub 2020 May 25.

Abstract

Ensemble docking has provided an inexpensive method to account for receptor flexibility in molecular docking for virtual screening. Unfortunately, as there is no rigorous theory to connect the docking scores from multiple structures to measured activity, researchers have not yet come up with effective ways to use these scores to classify compounds into actives and inactives. This shortcoming has led to the decrease, rather than an increase in the performance of classifying compounds when more structures are added to the ensemble. Previously, we suggested machine learning, implemented in the form of a naïve Bayesian model could alleviate this problem. However, the naïve Bayesian model assumed that the probabilities of observing the docking scores to different structures to be independent. This approximation might prevent it from achieving even higher performance. In the work presented in this paper, we have relaxed this approximation when using several other machine learning methods-k nearest neighbor, logistic regression, support vector machine, and random forest-to improve ensemble docking. We found significant improvement.

摘要

基于分子对接的虚拟筛选中,对接配体时考虑受体柔性,集合 docking 提供了一种廉价的方法。遗憾的是,由于缺乏将来自多个结构的 docking 评分与测量活性相关联的严格理论,研究人员还没有找到有效方法来利用这些评分将化合物分类为活性和非活性。当向集合中添加更多结构时,这一缺陷导致化合物分类的性能下降,而不是提高。此前,我们提出了机器学习(以朴素贝叶斯模型的形式实现)可以缓解这一问题。然而,朴素贝叶斯模型假设观察不同结构的 docking 评分的概率是相互独立的。这种近似可能会阻止它实现更高的性能。在本文提出的工作中,我们放宽了使用其他几种机器学习方法(k 最近邻、逻辑回归、支持向量机和随机森林)来改进集合对接时的这一近似。我们发现了显著的改进。

相似文献

1
Using machine learning to improve ensemble docking for drug discovery.
Proteins. 2020 Oct;88(10):1263-1270. doi: 10.1002/prot.25899. Epub 2020 May 25.
2
Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility.
J Chem Inf Model. 2014 Oct 27;54(10):2664-79. doi: 10.1021/ci500414b. Epub 2014 Sep 29.
3
Machine Learning Classification Models to Improve the Docking-based Screening: A Case of PI3K-Tankyrase Inhibitors.
Mol Inform. 2018 Nov;37(11):e1800030. doi: 10.1002/minf.201800030. Epub 2018 Jun 14.
4
Binding Activity Prediction of Cyclin-Dependent Inhibitors.
J Chem Inf Model. 2015 Jul 27;55(7):1469-82. doi: 10.1021/ci500633c. Epub 2015 Jul 10.
5
Statistical analysis of EGFR structures' performance in virtual screening.
J Comput Aided Mol Des. 2015 Nov;29(11):1045-55. doi: 10.1007/s10822-015-9877-9. Epub 2015 Oct 17.
6
Discovery of novel checkpoint kinase 1 inhibitors by virtual screening based on multiple crystal structures.
J Chem Inf Model. 2011 Nov 28;51(11):2904-14. doi: 10.1021/ci200257b. Epub 2011 Oct 12.
8
Ensemble learning from ensemble docking: revisiting the optimum ensemble size problem.
Sci Rep. 2022 Jan 10;12(1):410. doi: 10.1038/s41598-021-04448-5.
9
Use of machine learning approaches for novel drug discovery.
Expert Opin Drug Discov. 2016;11(3):225-39. doi: 10.1517/17460441.2016.1146250.

引用本文的文献

1
Few-shot meta-learning applied to whole brain activity maps improves systems neuropharmacology and drug discovery.
iScience. 2024 Sep 3;27(10):110875. doi: 10.1016/j.isci.2024.110875. eCollection 2024 Oct 18.
3
Integrated Molecular Modeling and Machine Learning for Drug Design.
J Chem Theory Comput. 2023 Nov 14;19(21):7478-7495. doi: 10.1021/acs.jctc.3c00814. Epub 2023 Oct 26.
4
Deep learning enables the discovery of a novel cuproptosis-inducing molecule for the inhibition of hepatocellular carcinoma.
Acta Pharmacol Sin. 2024 Feb;45(2):391-404. doi: 10.1038/s41401-023-01167-7. Epub 2023 Oct 6.
5
6
Discrimination of psychrophilic enzymes using machine learning algorithms with amino acid composition descriptor.
Front Microbiol. 2023 Feb 13;14:1130594. doi: 10.3389/fmicb.2023.1130594. eCollection 2023.
7
Opportunities and challenges in application of artificial intelligence in pharmacology.
Pharmacol Rep. 2023 Feb;75(1):3-18. doi: 10.1007/s43440-022-00445-1. Epub 2023 Jan 9.
8
Protein-Ligand Docking in the Machine-Learning Era.
Molecules. 2022 Jul 18;27(14):4568. doi: 10.3390/molecules27144568.
9
Essential Dynamics Ensemble Docking for Structure-Based GPCR Drug Discovery.
Front Mol Biosci. 2022 Jun 29;9:879212. doi: 10.3389/fmolb.2022.879212. eCollection 2022.
10
AtomNet PoseRanker: Enriching Ligand Pose Quality for Dynamic Proteins in Virtual High-Throughput Screens.
J Chem Inf Model. 2022 Mar 14;62(5):1178-1189. doi: 10.1021/acs.jcim.1c01250. Epub 2022 Mar 2.

本文引用的文献

1
Inexpensive Method for Selecting Receptor Structures for Virtual Screening.
J Chem Inf Model. 2016 Jan 25;56(1):21-34. doi: 10.1021/acs.jcim.5b00299. Epub 2015 Dec 29.
2
Understanding the challenges of protein flexibility in drug design.
Expert Opin Drug Discov. 2015 Dec;10(12):1301-13. doi: 10.1517/17460441.2015.1094458. Epub 2015 Sep 28.
3
Flexible receptor docking for drug discovery.
Expert Opin Drug Discov. 2015;10(11):1189-200. doi: 10.1517/17460441.2015.1078308. Epub 2015 Aug 26.
4
5
Molecular docking to flexible targets.
Methods Mol Biol. 2015;1215:445-69. doi: 10.1007/978-1-4939-1465-4_20.
6
Multi-conformer ensemble docking to difficult protein targets.
J Phys Chem B. 2015 Jan 22;119(3):1026-34. doi: 10.1021/jp506511p. Epub 2014 Sep 24.
7
Exploring the role of receptor flexibility in structure-based drug discovery.
Biophys Chem. 2014 Feb;186:31-45. doi: 10.1016/j.bpc.2013.10.007. Epub 2013 Nov 9.
9
Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking.
J Med Chem. 2012 Jul 26;55(14):6582-94. doi: 10.1021/jm300687e. Epub 2012 Jul 5.
10
Protein flexibility in docking and surface mapping.
Q Rev Biophys. 2012 Aug;45(3):301-43. doi: 10.1017/S0033583512000066. Epub 2012 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验