Suppr超能文献

神经内分泌肿瘤中 Ki-67 增殖指数:增强现实显微镜与图像分析联合评分是否可以改善?

Ki-67 proliferation index in neuroendocrine tumors: Can augmented reality microscopy with image analysis improve scoring?

机构信息

Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.

Department of Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

Cancer Cytopathol. 2020 Aug;128(8):535-544. doi: 10.1002/cncy.22272. Epub 2020 May 13.

Abstract

BACKGROUND

The Ki-67 index is important for grading neuroendocrine tumors (NETs) in cytology. However, different counting methods exist. Recently, augmented reality microscopy (ARM) has enabled real-time image analysis using glass slides. The objective of the current study was to compare different traditional Ki-67 scoring methods in cell block material with newer methods such as ARM.

METHODS

Ki-67 immunostained slides from 50 NETs of varying grades were retrieved (39 from the pancreas and 11 metastases). Methods with which to quantify the Ki-67 index in up to 3 hot spots included: 1) "eyeball" estimation (EE); 2) printed image manual counting (PIMC); 3) ARM with live image analysis; and 4) image analysis using whole-slide images (WSI) (field of view [FOV] and the entire slide).

RESULTS

The Ki-67 index obtained using the different methods varied. The pairwise kappa results varied from no agreement for image analysis using digital image analysis WSI (FOV) and histology to near-perfect agreement for ARM and PIMC. Using surgical pathology as the gold standard, the EE method was found to have the highest concordance rate (84.2%), followed by WSI analysis of the entire slide (73.7%) and then both the ARM and PIMC methods (63.2% for both). The PIMC method was the most time-consuming whereas image analysis using WSI (FOV) was the fastest method followed by ARM.

CONCLUSIONS

The Ki-67 index for NETs in cell block material varied by the method used for scoring, which may affect grade. PIMC was the most time-consuming method, and EE had the highest concordance rate. Although real-time automated counting using image analysis demonstrated inaccuracies, ARM streamlined and hastened the task of Ki-67 quantification in NETs.

摘要

背景

Ki-67 指数对于细胞学分级神经内分泌肿瘤(NET)很重要。然而,目前存在不同的计数方法。最近,增强现实显微镜(ARM)使得使用载玻片实时进行图像分析成为可能。本研究的目的是比较细胞块材料中不同的传统 Ki-67 评分方法与 ARM 等较新方法。

方法

从 50 个不同分级的 NET 细胞块组织中检索 Ki-67 免疫染色切片(胰腺 39 个,转移 11 个)。用于对多达 3 个热点定量 Ki-67 指数的方法包括:1)“目测”估计(EE);2)打印图像手动计数(PIMC);3)使用实时图像分析的 ARM;4)使用全玻片图像(WSI)(视野(FOV)和整个玻片)进行图像分析。

结果

使用不同方法获得的 Ki-67 指数不同。数字图像分析 WSI(FOV)和组织学之间的配对 Kappa 结果没有一致性,而 ARM 和 PIMC 之间的结果几乎完全一致。使用外科病理学作为金标准,EE 方法的一致性率最高(84.2%),其次是整个玻片的 WSI 分析(73.7%),然后是 ARM 和 PIMC 方法(两者均为 63.2%)。PIMC 方法最耗时,而 WSI(FOV)图像分析是最快的方法,其次是 ARM。

结论

细胞块材料中 NET 的 Ki-67 指数因评分方法而异,这可能会影响分级。PIMC 方法最耗时,EE 方法的一致性率最高。虽然使用图像分析实时自动计数存在不准确性,但 ARM 简化并加快了 NET 中 Ki-67 定量的任务。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验