Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
Department of Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Cancer Cytopathol. 2020 Aug;128(8):535-544. doi: 10.1002/cncy.22272. Epub 2020 May 13.
The Ki-67 index is important for grading neuroendocrine tumors (NETs) in cytology. However, different counting methods exist. Recently, augmented reality microscopy (ARM) has enabled real-time image analysis using glass slides. The objective of the current study was to compare different traditional Ki-67 scoring methods in cell block material with newer methods such as ARM.
Ki-67 immunostained slides from 50 NETs of varying grades were retrieved (39 from the pancreas and 11 metastases). Methods with which to quantify the Ki-67 index in up to 3 hot spots included: 1) "eyeball" estimation (EE); 2) printed image manual counting (PIMC); 3) ARM with live image analysis; and 4) image analysis using whole-slide images (WSI) (field of view [FOV] and the entire slide).
The Ki-67 index obtained using the different methods varied. The pairwise kappa results varied from no agreement for image analysis using digital image analysis WSI (FOV) and histology to near-perfect agreement for ARM and PIMC. Using surgical pathology as the gold standard, the EE method was found to have the highest concordance rate (84.2%), followed by WSI analysis of the entire slide (73.7%) and then both the ARM and PIMC methods (63.2% for both). The PIMC method was the most time-consuming whereas image analysis using WSI (FOV) was the fastest method followed by ARM.
The Ki-67 index for NETs in cell block material varied by the method used for scoring, which may affect grade. PIMC was the most time-consuming method, and EE had the highest concordance rate. Although real-time automated counting using image analysis demonstrated inaccuracies, ARM streamlined and hastened the task of Ki-67 quantification in NETs.
Ki-67 指数对于细胞学分级神经内分泌肿瘤(NET)很重要。然而,目前存在不同的计数方法。最近,增强现实显微镜(ARM)使得使用载玻片实时进行图像分析成为可能。本研究的目的是比较细胞块材料中不同的传统 Ki-67 评分方法与 ARM 等较新方法。
从 50 个不同分级的 NET 细胞块组织中检索 Ki-67 免疫染色切片(胰腺 39 个,转移 11 个)。用于对多达 3 个热点定量 Ki-67 指数的方法包括:1)“目测”估计(EE);2)打印图像手动计数(PIMC);3)使用实时图像分析的 ARM;4)使用全玻片图像(WSI)(视野(FOV)和整个玻片)进行图像分析。
使用不同方法获得的 Ki-67 指数不同。数字图像分析 WSI(FOV)和组织学之间的配对 Kappa 结果没有一致性,而 ARM 和 PIMC 之间的结果几乎完全一致。使用外科病理学作为金标准,EE 方法的一致性率最高(84.2%),其次是整个玻片的 WSI 分析(73.7%),然后是 ARM 和 PIMC 方法(两者均为 63.2%)。PIMC 方法最耗时,而 WSI(FOV)图像分析是最快的方法,其次是 ARM。
细胞块材料中 NET 的 Ki-67 指数因评分方法而异,这可能会影响分级。PIMC 方法最耗时,EE 方法的一致性率最高。虽然使用图像分析实时自动计数存在不准确性,但 ARM 简化并加快了 NET 中 Ki-67 定量的任务。