Suppr超能文献

用于低损耗纳米技术应用的单晶贵金属薄膜和纳米结构的可扩展绿色制造

Scalable, Green Fabrication of Single-Crystal Noble Metal Films and Nanostructures for Low-Loss Nanotechnology Applications.

作者信息

V Grayli Sasan, Zhang Xin, MacNab Finlay C, Kamal Saeid, Star Dmitry, Leach Gary W

机构信息

Department of Chemistry, Laboratory for Advanced Spectroscopy and Imaging Research, and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada.

出版信息

ACS Nano. 2020 Jun 23;14(6):7581-7592. doi: 10.1021/acsnano.0c03466. Epub 2020 Jun 3.

Abstract

The confinement of spatially extended electromagnetic waves to nanometer-scale metal structures can be harnessed for application in information processing, energy harvesting, sensing, and catalysis. Metal nanostructures enable negative refractive index, subwavelength resolution imaging, and patterning through engineered metamaterials and promise technologies that will operate in the quantum plasmonics regime. However, the controlled fabrication of high-definition single-crystal subwavelength metal nanostructures has remained a significant hurdle due to the tendency for polycrystalline metal growth using conventional physical vapor deposition methods and the challenges associated with placing solution-grown nanocrystals in desired orientations and locations on a surface to manufacture functional devices. Here, we introduce a scalable and green wet chemical approach to monocrystalline noble metal thin films and nanostructures. The method enables the fabrication of ultrasmooth, epitaxial, single-crystal films of controllable thickness that are ideal for the subtractive manufacture of nanostructures through ion beam milling and additive crystalline nanostructure lithographic patterning for large-area, single-crystal metasurfaces and high aspect ratio nanowires. Our single-crystal nanostructures demonstrate improved feature quality, pattern transfer yield, reduced optical and resistive losses, and tailored local fields to yield greater optical response and improved stability compared to those of polycrystalline structures-supporting greater local field enhancements and enabling practical advances at the nanoscale.

摘要

将空间扩展的电磁波限制在纳米级金属结构中,可用于信息处理、能量收集、传感和催化等领域。金属纳米结构通过工程超材料实现负折射率、亚波长分辨率成像和图案化,并有望应用于量子等离子体领域的技术。然而,由于使用传统物理气相沉积方法时多晶金属生长的趋势,以及将溶液生长的纳米晶体以所需方向和位置放置在表面以制造功能器件所面临的挑战,高清单晶亚波长金属纳米结构的可控制造仍然是一个重大障碍。在此,我们介绍一种可扩展的绿色湿化学方法来制备单晶贵金属薄膜和纳米结构。该方法能够制造出超光滑、外延、厚度可控的单晶薄膜,这些薄膜非常适合通过离子束铣削进行纳米结构的减法制造,以及通过光刻图案化进行大面积单晶超表面和高纵横比纳米线的加法晶体纳米结构制造。与多晶结构相比,我们的单晶纳米结构具有更高的特征质量、图案转移产率、更低的光学和电阻损耗,以及经过定制的局部场,从而产生更大的光学响应和更高的稳定性,支持更大的局部场增强,并在纳米尺度上实现实际进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验