Suppr超能文献

使用二元逻辑回归、随机森林、集成旋转森林、REPTree 预测森林砍伐概率:印度 Gumani 河流域的案例研究。

Predicting the deforestation probability using the binary logistic regression, random forest, ensemble rotational forest, REPTree: A case study at the Gumani River Basin, India.

机构信息

Department of Geography, University of Gour Banga, Malda, West Bengal, India.

Research Scholar, Department of Geography, University of Gour Banga, India.

出版信息

Sci Total Environ. 2020 Aug 15;730:139197. doi: 10.1016/j.scitotenv.2020.139197. Epub 2020 May 4.

Abstract

Rapid population growth and its corresponding effects like the expansion of human settlement, increasing agricultural land, and industry lead to the loss of forest area in most parts of the world especially in such highly populated nations like India. Forest canopy density (FCD) is a useful measure to assess the forest cover change in its own as numerous works of forest change have been done using only FCD with the help of remote sensing and GIS. The coupling of binary logistic regression (BLR), random forest (RF), ensemble of rotational forest and reduced error pruning trees (RTF-REPTree) with FCD makes it more convenient to find out the deforestation probability. Advanced vegetation index (AVI), bare soil index (BSI), shadow index (SI), and scaled vegetation density (VD) derived from Landsat imageries are the main input parameters to identify the FCD. After preparing the FCDs of 1990, 2000, 2010 and 2017 the deforestation map of the study area was prepared and considered as dependent parameter for deforestation probability modelling. On the other hand, twelve deforestation determining factors were used to delineate the deforestation probability with the help of BLR, RF and RTF-REPTree models. These deforestation probability models were validated through area under curve (AUC), receiver operating characteristics (ROC), efficiency, true skill statistics (TSS) and Kappa co-efficient. The validation result shows that all the models like BLR (AUC = 0.874), RF (AUC = 0.886) and RTF-REPTree (AUC = 0.919) have good capability of assessing the deforestation probability but among them, RTF-REPTree has the highest accuracy level. The result also shows that low canopy density area i.e. not under the dense forest cover has increased by 9.26% from 1990 to 2017. Besides, nearly 30% of the forested land is under high to very high deforestation probable zone, which needs to be protected with immediate measures.

摘要

快速的人口增长及其相应的影响,如人类住区的扩张、农业用地的增加和工业的发展,导致世界上大部分地区,特别是人口众多的印度这样的国家,森林面积减少。森林冠层密度(FCD)是评估森林覆盖变化的有用指标,因为已经有许多关于森林变化的工作仅使用 FCD 并借助遥感和 GIS 来完成。二元逻辑回归(BLR)、随机森林(RF)、旋转森林集成和简化错误修剪树(RTF-REPTree)与 FCD 的结合,使得发现森林砍伐概率变得更加方便。从 Landsat 图像中提取的高级植被指数(AVI)、裸土指数(BSI)、阴影指数(SI)和缩放植被密度(VD)是识别 FCD 的主要输入参数。在准备了 1990 年、2000 年、2010 年和 2017 年的 FCD 之后,准备了研究区域的森林砍伐图,并将其视为森林砍伐概率建模的依赖参数。另一方面,使用 12 个森林砍伐决定因素,借助 BLR、RF 和 RTF-REPTree 模型来划定森林砍伐概率。通过曲线下面积(AUC)、接收者操作特征(ROC)、效率、真实技能统计(TSS)和 Kappa 系数对这些森林砍伐概率模型进行了验证。验证结果表明,所有模型,如 BLR(AUC=0.874)、RF(AUC=0.886)和 RTF-REPTree(AUC=0.919),都具有很好的评估森林砍伐概率的能力,但其中 RTF-REPTree 的准确性水平最高。结果还表明,从 1990 年到 2017 年,低冠层密度区(即不在茂密森林覆盖下)增加了 9.26%。此外,近 30%的林地处于高到极高森林砍伐概率区,需要立即采取措施加以保护。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验