Suppr超能文献

基于反射光和深度神经网络的自适应光学波前校正

Wavefront correction for adaptive optics with reflected light and deep neural networks.

作者信息

Vishniakou Ivan, Seelig Johannes D

出版信息

Opt Express. 2020 May 11;28(10):15459-15471. doi: 10.1364/OE.392794.

Abstract

Light scattering and aberrations limit optical microscopy in biological tissue, which motivates the development of adaptive optics techniques. Here, we develop a method for wavefront correction in adaptive optics with reflected light and deep neural networks compatible with an epi-detection configuration. Large datasets of sample aberrations which consist of excitation and detection path aberrations as well as the corresponding reflected focus images are generated. These datasets are used for training deep neural networks. After training, these networks can disentangle and independently correct excitation and detection aberrations based on reflected light images recorded from scattering samples. A similar deep learning approach is also demonstrated with scattering guide stars. The predicted aberration corrections are validated using two photon imaging.

摘要

光散射和像差限制了生物组织中的光学显微镜成像,这推动了自适应光学技术的发展。在此,我们开发了一种用于自适应光学中波前校正的方法,该方法利用反射光和与落射检测配置兼容的深度神经网络。生成了由激发和检测路径像差以及相应的反射聚焦图像组成的大量样本像差数据集。这些数据集用于训练深度神经网络。训练后,这些网络可以根据从散射样本记录的反射光图像,分解并独立校正激发和检测像差。利用散射导星也展示了一种类似的深度学习方法。使用双光子成像对预测的像差校正进行了验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验