Jabeen Maria, Haxha Shyqyri
Opt Express. 2020 Apr 27;28(9):12709-12728. doi: 10.1364/OE.389707.
In this paper, systematic design and analysis of thin-film graphene-silicon solar cells with the addition of an anti-reflection coating (ARC), hexagonal boron nitride (h-BN) interlayer and decorated with Au/Ag NPs infused in rear ZnO:Al buffer layer is reported. The 3D NPs are located on the top and rear side of the solar cell. Initially, we simulated a reference 2D graphene-silicon solar cell with highest simulated short circuit current density (Jsc) 30mA/ cm and power conversion efficiency (PCE) of 10.65%. Using 2D and 3D full vectorial finite element method (FVFEM) simulations, we significantly improved the Jsc by 6.2mA/ cm from 30mA/cm to 36.21mA/cm and PCE from 10.93% to 12.03%. We utilized a patterned graphene sheet with small nanoholes to increase surface and optical conductivity. Plasmonic NPs embedded in a graphene-silicon solar cell to increase plasmonic resonance effects is investigated. The 3D position of the patterned graphene, rear buffer layer stack, size, shape, and periodicity of NPs were well-controlled and analyzed under certain parametric variation conditions. Ag NPs located inside textured ZnO:Al detached to metal contact and small periodic Au NPs decorated beneath a h-BN interlayer lead to highly efficient light confinement and increase photon current generation. The proposed device exhibits 12.03% PCE, maximum light absorption over 80% and high overall quantum efficiency (QE). Furthermore, this structure offers major light trapping advantages, including significant EM light propagation throughout the solar cell structure.
本文报道了对添加抗反射涂层(ARC)、六方氮化硼(h-BN)中间层并在背面ZnO:Al缓冲层中注入Au/Ag纳米颗粒(NPs)的薄膜石墨烯-硅太阳能电池进行的系统设计与分析。三维纳米颗粒位于太阳能电池的顶部和背面。最初,我们模拟了一个参考二维石墨烯-硅太阳能电池,其模拟的最高短路电流密度(Jsc)为30mA/cm²,功率转换效率(PCE)为10.65%。通过二维和三维全矢量有限元方法(FVFEM)模拟,我们将Jsc从30mA/cm²显著提高了6.2mA/cm²,达到36.21mA/cm²,PCE从10.93%提高到12.03%。我们使用了带有小纳米孔的图案化石墨烯片来提高表面和光导率。研究了嵌入石墨烯-硅太阳能电池中的等离子体纳米颗粒以增强等离子体共振效应。在一定的参数变化条件下,对图案化石墨烯的三维位置、背面缓冲层堆叠、纳米颗粒的尺寸、形状和周期性进行了良好控制和分析。位于纹理化ZnO:Al内部的Ag纳米颗粒与金属接触分离,而在h-BN中间层下方装饰的小周期Au纳米颗粒导致高效的光限制并增加光子电流产生。所提出的器件表现出12.03%的PCE、超过80%的最大光吸收和高整体量子效率(QE)。此外,这种结构具有主要的光捕获优势,包括在整个太阳能电池结构中显著的电磁光传播。