Suppr超能文献

通过计算方法在单个患者的基因组中识别致病突变。

Identifying disease-causing mutations in genomes of single patients by computational approaches.

机构信息

Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, US.

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, US.

出版信息

Hum Genet. 2020 Jun;139(6-7):769-776. doi: 10.1007/s00439-020-02179-7. Epub 2020 May 13.

Abstract

Over the last decade next generation sequencing (NGS) has been extensively used to identify new pathogenic mutations and genes causing rare genetic diseases. The efficient analyses of NGS data is not trivial and requires a technically and biologically rigorous pipeline that addresses data quality control, accurate variant filtration to minimize false positives and false negatives, and prioritization of the remaining genes based on disease genomics and physiological knowledge. This review provides a pipeline including all these steps, describes popular software for each step of the analysis, and proposes a general framework for the identification of causal mutations and genes in individual patients of rare genetic diseases.

摘要

在过去的十年中,下一代测序(NGS)被广泛用于鉴定导致罕见遗传疾病的新致病突变和基因。NGS 数据的有效分析并非易事,需要一个在技术和生物学上都严格的管道,该管道需要解决数据质量控制、准确的变体过滤以最小化假阳性和假阴性、以及根据疾病基因组学和生理学知识对剩余基因进行优先级排序等问题。本综述提供了一个包含所有这些步骤的管道,描述了分析过程中每个步骤的流行软件,并为鉴定罕见遗传疾病个体患者中的因果突变和基因提出了一个通用框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验