Suppr超能文献

通过计算方法在单个患者的基因组中识别致病突变。

Identifying disease-causing mutations in genomes of single patients by computational approaches.

机构信息

Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, US.

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, US.

出版信息

Hum Genet. 2020 Jun;139(6-7):769-776. doi: 10.1007/s00439-020-02179-7. Epub 2020 May 13.

Abstract

Over the last decade next generation sequencing (NGS) has been extensively used to identify new pathogenic mutations and genes causing rare genetic diseases. The efficient analyses of NGS data is not trivial and requires a technically and biologically rigorous pipeline that addresses data quality control, accurate variant filtration to minimize false positives and false negatives, and prioritization of the remaining genes based on disease genomics and physiological knowledge. This review provides a pipeline including all these steps, describes popular software for each step of the analysis, and proposes a general framework for the identification of causal mutations and genes in individual patients of rare genetic diseases.

摘要

在过去的十年中,下一代测序(NGS)被广泛用于鉴定导致罕见遗传疾病的新致病突变和基因。NGS 数据的有效分析并非易事,需要一个在技术和生物学上都严格的管道,该管道需要解决数据质量控制、准确的变体过滤以最小化假阳性和假阴性、以及根据疾病基因组学和生理学知识对剩余基因进行优先级排序等问题。本综述提供了一个包含所有这些步骤的管道,描述了分析过程中每个步骤的流行软件,并为鉴定罕见遗传疾病个体患者中的因果突变和基因提出了一个通用框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验