Suppr超能文献

真菌杀虫剂活性成分制剂细胞耐热性的表型和分子研究进展。

Phenotypic and molecular insights into heat tolerance of formulated cells as active ingredients of fungal insecticides.

机构信息

College of Agricultural and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.

Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.

出版信息

Appl Microbiol Biotechnol. 2020 Jul;104(13):5711-5724. doi: 10.1007/s00253-020-10659-z. Epub 2020 May 13.

Abstract

Formulated conidia of insect-pathogenic fungi, such as Beauveria and Metarhizium, serve as the active ingredients of fungal insecticides but are highly sensitive to persistent high temperatures (32-35 °C) that can be beyond their upper thermal limits especially in tropical areas and during summer months. Fungal heat tolerance and inter- or intra-specific variability are critical factors and limitations to field applications of fungal pesticides during seasons favoring outbreaks of pest populations. The past decades have witnessed tremendous advances in improving fungal pesticides through selection of heat-tolerant strains from natural isolates, improvements and innovations in terms of solid-state fermentation technologies for the production of more heat-tolerant conidia, and the use of genetic engineering of candidate strains for enhancing heat tolerance. More recently, with the entry into a post-genomic era, a large number of signaling and effector genes have been characterized as important sustainers of heat tolerance in both Beauveria and Metarhizium, which represent the main species used as fungal pesticides worldwide. This review focuses on recent advances and provides an overview into the broad molecular basis of fungal heat tolerance and its multiple regulatory pathways. Emphases are placed on approaches for screening of heat-tolerant strains, methods for optimizing conidial quality linked to virulence and heat tolerance particularly involving cell wall architecture and optimized trehalose/mannitol contents, and how molecular determinants can be exploited for genetic improvement of heat tolerance and pest-control potential. Examples of fungal pesticides with different host spectra and their appropriateness for use in apiculture are given. KEY POINTS: • Heat tolerance is critical for field stability and efficacy of fungal insecticides. • Inter- and intra-specific variability exists in insect-pathogenic fungi. • Optimized production technology and biotechnology can improve heat tolerance. • Fungal heat tolerance is orchestrated by multiple molecular pathways.

摘要

昆虫病原真菌(如球孢白僵菌和金龟子绿僵菌)的分生孢子是真菌杀虫剂的有效成分,但它们对持续的高温(32-35°C)非常敏感,特别是在热带地区和夏季,高温可能超过它们的上限温度。真菌的耐热性和种间或种内变异性是真菌杀虫剂在有利于害虫种群爆发的季节进行田间应用的关键因素和限制因素。过去几十年,通过从天然分离物中选择耐热菌株、改进和创新固体发酵技术以生产更耐热的分生孢子,以及利用候选菌株的遗传工程来提高耐热性,在提高真菌杀虫剂方面取得了巨大进展。最近,随着进入后基因组时代,大量的信号和效应基因已被鉴定为球孢白僵菌和金龟子绿僵菌耐热性的重要维持者,这两种真菌是世界范围内用作真菌杀虫剂的主要物种。本综述重点介绍了最新进展,并概述了真菌耐热性的广泛分子基础及其多种调控途径。重点介绍了耐热菌株筛选方法、与毒力和耐热性相关的分生孢子质量优化方法,特别是涉及细胞壁结构和优化海藻糖/甘露醇含量的方法,以及如何利用分子决定因素来遗传改良耐热性和害虫控制潜力。还给出了具有不同宿主谱的真菌杀虫剂的实例及其在养蜂业中的适用性。关键点: • 耐热性对真菌杀虫剂的田间稳定性和功效至关重要。 • 昆虫病原真菌存在种间和种内变异性。 • 优化的生产技术和生物技术可以提高耐热性。 • 真菌耐热性是由多个分子途径协调的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验