Suppr超能文献

高速塘生物质生产和水热液化:废水处理与生物能源一体化。

Biomass production in high rate ponds and hydrothermal liquefaction: Wastewater treatment and bioenergy integration.

机构信息

Federal Universityof Itajubá, Campus Itabira (Universidade Federal de Itajubá, Campus Itabira/Unifei), Intitute of Applied and Pure Sciences, Rua Irmã Ivone Drumond, 200, 35903-087 Itabira, MG, Brazil.

Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Environmental Engineering Group - nPA, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil.

出版信息

Sci Total Environ. 2020 Jul 1;724:138104. doi: 10.1016/j.scitotenv.2020.138104. Epub 2020 Mar 21.

Abstract

Against the worldwide energy crisis and climate change, new forms of energy generation have been investigated. Among the possibilities, microalgae are considered potential feedstock for biofuels production. However, there are still important challenges to overcome. In this context, the integration of biomass cultivation and the treatment of different types of wastewater can represent a source of nutrients and water, with the additional benefit of reducing the discharge of pollutant loads into water bodies. The wastewater grown biomass is composed by a microorganism consortium. These microorganisms can develop important symbiotic relationships for the optimization of biomass production. However, the success of algal biomass cultivation in effluents also involves the development of efficient reactors, which ranges from design criteria to operational parameters. High rate ponds are the most suitable reactors for such a purpose, within the context of a wastewater treatment plant. In this reactor, the addition of CO is an important parameter for pH control and, consequently, will influence nutrient assimilation. Another relevant operational parameter is the pond depth, which will have a major role in radiation availability along the water column. With respect to the energy use of the biomass, hydrothermal liquefaction (HTL) represents an interesting alternative for wastewater grown biomass, since the process does not require complete drying of the biomass, its bio-oil production efficiency is not necessarily attached to the lipid content and may present a positive energy balance. In addition, the possibility of using the HTL by-products, especially the water soluble products, in the context of a biorefinery, represents a route for nutrient recycling, residue minimization, and cost reduction.

摘要

面对全球能源危机和气候变化,人们研究了新的能源形式。在各种可能性中,微藻被认为是生物燃料生产的潜在原料。然而,仍有一些重要的挑战需要克服。在这种情况下,生物质培养与不同类型废水处理的结合,可以提供营养物质和水的来源,同时还可以减少污染物排放到水体中的负荷。废水培养的生物质由微生物群落组成。这些微生物可以发展出重要的共生关系,从而优化生物质的生产。然而,藻类生物质在废水中的成功培养还涉及到高效反应器的开发,这涉及到从设计标准到操作参数等各个方面。在废水处理厂中,高速率池塘是最适合这种目的的反应器。在该反应器中,添加 CO 是控制 pH 的一个重要参数,因此会影响养分的同化。另一个相关的操作参数是池塘的深度,它在水柱中辐射可用性方面起着重要作用。就生物质的能源利用而言,水热液化(HTL)是废水培养生物质的一个很有前途的选择,因为该过程不需要将生物质完全干燥,其生物油的生产效率不一定与脂质含量有关,并且可能具有正的能量平衡。此外,在生物炼制的背景下,利用 HTL 的副产物,特别是水溶性产物,为养分回收、减少残留物和降低成本提供了一条途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验