Suppr超能文献

用于近红外神经可视化的靶向Na1.7肽的荧光标记

Fluorescence labeling of a Na1.7-targeted peptide for near-infrared nerve visualization.

作者信息

Gonzales Junior, Pirovano Giacomo, Chow Chun Yuen, de Souza Franca Paula Demetrio, Carter Lukas M, Klint Julie K, Guru Navjot, Lewis Jason S, King Glenn F, Reiner Thomas

机构信息

Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.

Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia.

出版信息

EJNMMI Res. 2020 May 14;10(1):49. doi: 10.1186/s13550-020-00630-4.

Abstract

BACKGROUND

Accidental peripheral nerve injury during surgical intervention results in a broad spectrum of potentially debilitating side effects. Tissue distortion and poor visibility can significantly increase the risk of nerve injury with long-lasting consequences for the patient. We developed and characterized Hs1a-FL, a fluorescent near-infrared molecule for nerve visualization in the operating theater with the aim of helping physicians to visualize nerves during surgery. Hs1a was derived from the venom of the Chinese bird spider, Haplopelma schmidti, and conjugated to Cy7.5 dye. Hs1a-FL was injected intravenously in mice, and harvested nerves were imaged microscopically and with epifluorescence.

RESULTS

Hs1a-FL showed specific and stable binding to the sodium channel Na1.7, present on the surface of human and mouse nerves. Hs1a-FL allowed epifluorescence visualization of sciatic mouse nerves with favorable nerve-to-muscle contrast.

CONCLUSIONS

Fluorescent Na1.7-targeted tracers have the potential to be adopted clinically for the intraoperative visualization of peripheral nerves during surgery, providing guidance for the surgeon and potentially improving the standard of care.

摘要

背景

手术干预过程中意外的周围神经损伤会导致一系列潜在的使人衰弱的副作用。组织变形和视野不佳会显著增加神经损伤的风险,给患者带来长期后果。我们开发并表征了Hs1a-FL,这是一种用于手术室神经可视化的荧光近红外分子,旨在帮助医生在手术过程中可视化神经。Hs1a源自中国鸟蛛(海南捕鸟蛛)的毒液,并与Cy7.5染料偶联。将Hs1a-FL静脉注射到小鼠体内,对收获的神经进行显微镜成像和落射荧光成像。

结果

Hs1a-FL与人及小鼠神经表面存在的钠通道Na1.7表现出特异性和稳定的结合。Hs1a-FL能够通过落射荧光对小鼠坐骨神经进行可视化,具有良好的神经与肌肉对比度。

结论

靶向Na1.7的荧光示踪剂有潜力在临床上用于手术期间周围神经的术中可视化,为外科医生提供指导,并可能提高护理标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28b7/7225226/f8ecf1cadf51/13550_2020_630_Fig1_HTML.jpg

相似文献

1
Fluorescence labeling of a Na1.7-targeted peptide for near-infrared nerve visualization.
EJNMMI Res. 2020 May 14;10(1):49. doi: 10.1186/s13550-020-00630-4.
2
Development and Validation of Nerve-Targeted Bacteriochlorin Sensors.
J Am Chem Soc. 2023 Jul 5;145(26):14276-14287. doi: 10.1021/jacs.3c02520. Epub 2023 Jun 20.
3
Fluorescence Imaging of Peripheral Nerves by a Na1.7-Targeted Inhibitor Cystine Knot Peptide.
Bioconjug Chem. 2019 Nov 20;30(11):2879-2888. doi: 10.1021/acs.bioconjchem.9b00612. Epub 2019 Nov 8.
4
Na1.7 targeted fluorescence imaging agents for nerve identification during intraoperative procedures.
bioRxiv. 2024 Apr 6:2024.04.06.588368. doi: 10.1101/2024.04.06.588368.
5
Bimodal Imaging of Mouse Peripheral Nerves with Chlorin Tracers.
Mol Pharm. 2021 Mar 1;18(3):940-951. doi: 10.1021/acs.molpharmaceut.0c00946. Epub 2021 Jan 6.
6
Nerve-targeted probes for fluorescence-guided intraoperative imaging.
Theranostics. 2018 Jul 30;8(15):4226-4237. doi: 10.7150/thno.23084. eCollection 2018.
7
Fluorescence Imaging of Nerves During Surgery.
Ann Surg. 2019 Jul;270(1):69-76. doi: 10.1097/SLA.0000000000003130.
8
Identification of Degenerated Murine Facial Nerves With Fluorescence Labeling After Transection Injury.
Otolaryngol Head Neck Surg. 2023 Aug;169(2):234-242. doi: 10.1002/ohn.262. Epub 2023 Feb 9.
10
Intraoperative near-infrared fluorescent cholangiography (NIRFC) in mouse models of bile duct injury.
World J Surg. 2010 Feb;34(2):336-43. doi: 10.1007/s00268-009-0332-8.

引用本文的文献

1
Tissue-seeking dyes for in vivo applications.
Smart Mol. 2024 Oct 24;2(4):e20240029. doi: 10.1002/smo.20240029. eCollection 2024 Dec.
2
Realizing real-time optical molecular imaging in peripheral nerve tissue via Rhodamine B.
Front Med (Lausanne). 2024 Nov 26;11:1461520. doi: 10.3389/fmed.2024.1461520. eCollection 2024.
4
Advances in optical molecular imaging for neural visualization.
Front Bioeng Biotechnol. 2023 Aug 21;11:1250594. doi: 10.3389/fbioe.2023.1250594. eCollection 2023.
5
Neurotoxin-Derived Optical Probes for Biological and Medical Imaging.
Mol Imaging Biol. 2023 Oct;25(5):799-814. doi: 10.1007/s11307-023-01838-1. Epub 2023 Jul 19.
6
Improving precision surgery: A review of current intraoperative nerve tissue fluorescence imaging.
Curr Opin Chem Biol. 2023 Oct;76:102361. doi: 10.1016/j.cbpa.2023.102361. Epub 2023 Jul 14.
7
Development and Validation of Nerve-Targeted Bacteriochlorin Sensors.
J Am Chem Soc. 2023 Jul 5;145(26):14276-14287. doi: 10.1021/jacs.3c02520. Epub 2023 Jun 20.
8
Chemical and Biological Tools for the Study of Voltage-Gated Sodium Channels in Electrogenesis and Nociception.
Chembiochem. 2022 Jul 5;23(13):e202100625. doi: 10.1002/cbic.202100625. Epub 2022 Mar 21.
9
Pain-related toxins in scorpion and spider venoms: a face to face with ion channels.
J Venom Anim Toxins Incl Trop Dis. 2021 Dec 6;27:e20210026. doi: 10.1590/1678-9199-JVATITD-2021-0026. eCollection 2021.
10
Leveraging synthetic chlorins for bio-imaging applications.
Chem Commun (Camb). 2020 Oct 20;56(83):12608-12611. doi: 10.1039/d0cc05494a.

本文引用的文献

1
Fluorescence Imaging of Peripheral Nerves by a Na1.7-Targeted Inhibitor Cystine Knot Peptide.
Bioconjug Chem. 2019 Nov 20;30(11):2879-2888. doi: 10.1021/acs.bioconjchem.9b00612. Epub 2019 Nov 8.
2
High-resolution in vivo imaging of peripheral nerves using optical coherence tomography: a feasibility study.
J Neurosurg. 2019 Apr 26;132(6):1907-1913. doi: 10.3171/2019.2.JNS183542. Print 2020 Jun 1.
3
Fluorescence Imaging of Nerves During Surgery.
Ann Surg. 2019 Jul;270(1):69-76. doi: 10.1097/SLA.0000000000003130.
4
Nerve-targeted probes for fluorescence-guided intraoperative imaging.
Theranostics. 2018 Jul 30;8(15):4226-4237. doi: 10.7150/thno.23084. eCollection 2018.
6
Real-time, label-free, intraoperative visualization of peripheral nerves and micro-vasculatures using multimodal optical imaging techniques.
Biomed Opt Express. 2018 Feb 12;9(3):1097-1110. doi: 10.1364/BOE.9.001097. eCollection 2018 Mar 1.
7
Attempt of peripheral nerve reconstruction during lung cancer surgery.
Thorac Cancer. 2018 May;9(5):580-583. doi: 10.1111/1759-7714.12619. Epub 2018 Mar 2.
8
Nerve detection during surgery: optical spectroscopy for peripheral nerve localization.
Lasers Med Sci. 2018 Apr;33(3):619-625. doi: 10.1007/s10103-017-2433-1. Epub 2018 Feb 2.
9
Near-infrared Intraoperative Imaging of Thoracic Sympathetic Nerves: From Preclinical Study to Clinical Trial.
Theranostics. 2018 Jan 1;8(2):304-313. doi: 10.7150/thno.22369. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验