Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia.
Glob Chang Biol. 2020 Jul;26(7):4158-4168. doi: 10.1111/gcb.15120. Epub 2020 May 15.
This study evaluates the dynamics of soil organic carbon (SOC) under perennial crops across the globe. It quantifies the effect of change from annual to perennial crops and the subsequent temporal changes in SOC stocks during the perennial crop cycle. It also presents an empirical model to estimate changes in the SOC content under crops as a function of time, land use, and site characteristics. We used a harmonized global dataset containing paired-comparison empirical values of SOC and different types of perennial crops (perennial grasses, palms, and woody plants) with different end uses: bioenergy, food, other bio-products, and short rotation coppice. Salient outcomes include: a 20-year period encompassing a change from annual to perennial crops led to an average 20% increase in SOC at 0-30 cm (6.0 ± 4.6 Mg/ha gain) and a total 10% increase over the 0-100 cm soil profile (5.7 ± 10.9 Mg/ha). A change from natural pasture to perennial crop decreased SOC stocks by 1% over 0-30 cm (-2.5 ± 4.2 Mg/ha) and 10% over 0-100 cm (-13.6 ± 8.9 Mg/ha). The effect of a land use change from forest to perennial crops did not show significant impacts, probably due to the limited number of plots; but the data indicated that while a 2% increase in SOC was observed at 0-30 cm (16.81 ± 55.1 Mg/ha), a decrease in 24% was observed at 30-100 cm (-40.1 ± 16.8 Mg/ha). Perennial crops generally accumulate SOC through time, especially woody crops; and temperature was the main driver explaining differences in SOC dynamics, followed by crop age, soil bulk density, clay content, and depth. We present empirical evidence showing that the FAO perennialization strategy is reasonable, underscoring the role of perennial crops as a useful component of climate change mitigation strategies.
本研究评估了全球多年生作物下土壤有机碳(SOC)的动态变化。它量化了从一年生作物向多年生作物转变以及随后在多年生作物周期内 SOC 储量的时间变化的影响。它还提出了一个经验模型,以估计作为时间、土地利用和站点特征函数的作物下 SOC 含量的变化。我们使用了一个包含 SOC 和不同类型的多年生作物(多年生草本植物、棕榈和木本植物)的经验值的协调全球数据集,这些多年生作物具有不同的用途:生物能源、粮食、其他生物产品和短轮伐期造林。显著结果包括:涵盖从一年生作物向多年生作物转变的 20 年期间,在 0-30cm 处 SOC 平均增加 20%(增加 6.0±4.6 Mg/ha),在 0-100cm 土壤剖面中总共增加 10%(增加 5.7±10.9 Mg/ha)。从天然牧场向多年生作物的转变导致 0-30cm 处 SOC 储量减少 1%(减少 2.5±4.2 Mg/ha),0-100cm 处减少 10%(减少 13.6±8.9 Mg/ha)。从森林到多年生作物的土地利用变化的影响没有显示出显著的影响,可能是由于地块数量有限;但数据表明,虽然在 0-30cm 处 SOC 增加了 2%(增加 16.81±55.1 Mg/ha),但在 30-100cm 处减少了 24%(减少 40.1±16.8 Mg/ha)。多年生作物通常随着时间的推移积累 SOC,特别是木本作物;温度是解释 SOC 动态差异的主要驱动因素,其次是作物年龄、土壤容重、粘土含量和深度。我们提供了经验证据,表明粮农组织的多年生化战略是合理的,强调了多年生作物作为减缓气候变化策略的有用组成部分的作用。