Liao Dashuang, Chan Ka Fai, Chan Chi Hou, Zhang Qingle, Wang Haogang
Opt Lett. 2020 May 15;45(10):2906-2909. doi: 10.1364/OL.394046.
Holography has garnered an explosion of interest in tremendous applications, owing to its capability of storing amplitude and phase of light and reconstructing the full-wave information of targets. Spatial light modulators, metalenses, metasurfaces, and other devices have been explored to achieve holographic images. However, the required phase distributions for conventional holograms are generally calculated using the Gerchberg-Saxton algorithm, and the iteration is time-consuming without Fourier transform or other acceleration techniques. Few studies on designing holograms using artificial intelligence methods have been conducted. In this Letter, a three-dimensional (3D)-printed hologram for terahertz (THz) imaging based on a diffractive neural network (DNN) is proposed. Target imaging letters "THZ" with uniform field amplitude are assigned to a predefined imaging surface. Quantified phase profiles are primarily obtained by training the DNN with the target image and input field pattern. The entire training process takes only 60 s. Consequently, the hologram, that is, a two-dimensional array of dielectric posts with variational heights that store phase information, is fabricated using a 3D printer. The full-wave simulation and experimental results demonstrate the capability of the proposed hologram to achieve high-quality imaging in the THz regime. The proposed lens and design strategy may open new possibilities in display, optical-data storage, and optical encryption.
由于全息术能够存储光的振幅和相位并重建目标的全波信息,它在众多应用中引发了人们极大的兴趣。人们已经探索了空间光调制器、超透镜、超表面及其他器件来实现全息图像。然而,传统全息图所需的相位分布通常是使用格尔奇贝格 - 萨克斯顿算法计算的,并且在没有傅里叶变换或其他加速技术的情况下,迭代过程很耗时。目前很少有关于使用人工智能方法设计全息图的研究。在本信函中,提出了一种基于衍射神经网络(DNN)的用于太赫兹(THz)成像的三维(3D)打印全息图。将具有均匀场振幅的目标成像字母“THZ”分配到预定义的成像表面。通过用目标图像和输入场模式训练DNN主要获得量化的相位分布。整个训练过程仅需60秒。因此,使用3D打印机制造出全息图,即具有变化高度的二维介电柱阵列,其存储相位信息。全波模拟和实验结果证明了所提出的全息图在太赫兹波段实现高质量成像的能力。所提出的透镜和设计策略可能会在显示、光数据存储和光加密方面开辟新的可能性。