Suppr超能文献

一般健康问卷(GHQ-12)、贝克抑郁量表(BDI-6)和心理健康指数(MHI-5):芬兰人群样本中的心理计量学和预测性能。

General Health Questionnaire (GHQ-12), Beck Depression Inventory (BDI-6), and Mental Health Index (MHI-5): psychometric and predictive properties in a Finnish population-based sample.

机构信息

Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; National Institute for Health and Welfare, Finland.

Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland.

出版信息

Psychiatry Res. 2020 Jul;289:112973. doi: 10.1016/j.psychres.2020.112973. Epub 2020 May 7.

Abstract

The short versions of the General Health Questionnaire (GHQ-12), Beck's Depression Inventory (BDI-6), and Mental Health Index (MHI-5) are all valid and reliable measures of general psychological distress, depressive symptoms, and anxiety. We tested the psychometric properties of the scales, their overlap, and their ability to predict mental health service use using both regression and machine learning (ML, random forest) approaches. Data were from the population-based FinHealth-2017 Study of adults (N = 4270) with data on all of the evaluated instruments. Constructive validity, internal consistency, invariance, and optimal cut-off points in predicting mental health services were tested. Constructive validity was acceptable and all instruments measured their own distinct phenomenon. Some of the item scoring in BDI-6 was not optimal, and the sensitivity and specificity of all scales were relatively weak in predicting service use. Small gender differences emerged in optimal cut-off points. ML did not improve model predictions. GHQ-12, BDI-6, and MHI-5 may be interpreted to measure different constructs of psychological health symptoms, but are not particularly useful predictors of service use.

摘要

简短版一般健康问卷(GHQ-12)、贝克抑郁量表(BDI-6)和心理健康指数(MHI-5)都是衡量一般心理困扰、抑郁症状和焦虑的有效且可靠的工具。我们使用回归和机器学习(随机森林)方法检验了这些量表的心理计量学特性、重叠程度及其预测心理健康服务使用的能力。数据来自基于人群的 FinHealth-2017 成年人研究(N=4270),其中包含所有评估工具的数据。我们测试了结构效度、内部一致性、不变性和预测心理健康服务的最佳临界点。结构效度可接受,所有工具均测量了各自独特的现象。BDI-6 中的一些项目评分不理想,所有量表在预测服务使用方面的敏感性和特异性均较弱。最佳临界点存在微小的性别差异。机器学习并未提高模型预测能力。GHQ-12、BDI-6 和 MHI-5 可能被解释为测量心理健康症状的不同结构,但对于服务使用的预测作用并不特别有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验