Suppr超能文献

定量表型扫描统计(QPSS)揭示了与阿尔茨海默病内表型相关的罕见变异。

Quantitative phenotype scan statistic (QPSS) reveals rare variant associations with Alzheimer's disease endophenotypes.

作者信息

Katsumata Yuriko, Fardo David W

机构信息

Department of Biostatistics, University of Kentucky, Lexington, KY, 40536-0082, USA.

Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.

出版信息

BMC Med Genet. 2020 May 15;21(1):106. doi: 10.1186/s12881-020-01046-6.

Abstract

BACKGROUND

Current sequencing technologies have provided for a more comprehensive genome-wide assessment and have increased genotyping accuracy of rare variants. Scan statistic approaches have previously been adapted to genetic sequencing data. Unlike currently-employed association tests, scan-statistic-based approaches can both localize clusters of disease-related variants and, subsequently, examine the phenotype association within the resulting cluster. In this study, we present a novel Quantitative Phenotype Scan Statistic (QPSS) that extends an approach for dichotomous phenotypes to continuous outcomes in order to identify genomic regions where rare quantitative-phenotype-associated variants cluster.

RESULTS

We demonstrate the performance and practicality of QPSS with extensive simulations and an application to a whole-genome sequencing (WGS) study of cerebrospinal fluid (CSF) biomarkers from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Using QPSS, we identify regions of rare variant enrichment associated with levels of AD-related proteins, CSF Aβ and p-tau.

CONCLUSIONS

QPSS is implemented under the assumption that causal variants within a window have the same direction of effect. Typical self-contained tests employ a null hypothesis of no association between the target variant set and the phenotype. Therefore, an advantage of the proposed competitive test is that it is possible to refine a known region of interest to localize disease-associated clusters. The definition of clusters can be easily adapted based on variant function or annotation.

摘要

背景

当前的测序技术已能实现更全面的全基因组评估,并提高了罕见变异的基因分型准确性。扫描统计方法此前已被应用于基因测序数据。与目前使用的关联测试不同,基于扫描统计的方法既能定位与疾病相关的变异簇,随后又能检验所得簇内的表型关联。在本研究中,我们提出了一种新型的定量表型扫描统计方法(QPSS),它将一种用于二分表型的方法扩展到连续结果,以识别罕见的与定量表型相关的变异聚集的基因组区域。

结果

我们通过广泛的模拟以及将其应用于阿尔茨海默病神经成像倡议(ADNI)的脑脊液(CSF)生物标志物全基因组测序(WGS)研究,证明了QPSS的性能和实用性。使用QPSS,我们识别出了与AD相关蛋白、CSF Aβ和p-tau水平相关的罕见变异富集区域。

结论

QPSS是在一个窗口内的因果变异具有相同效应方向的假设下实施的。典型的自包含测试采用目标变异集与表型之间无关联的零假设。因此,所提出的竞争测试的一个优点是可以细化已知的感兴趣区域以定位与疾病相关的簇。簇的定义可以很容易地根据变异功能或注释进行调整。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8df/7229597/378014ce64d9/12881_2020_1046_Fig1_HTML.jpg

相似文献

4
Integration of bioinformatics and imaging informatics for identifying rare PSEN1 variants in Alzheimer's disease.
BMC Med Genomics. 2016 Aug 12;9 Suppl 1(Suppl 1):30. doi: 10.1186/s12920-016-0190-9.
5
Dynamic Scan Procedure for Detecting Rare-Variant Association Regions in Whole-Genome Sequencing Studies.
Am J Hum Genet. 2019 May 2;104(5):802-814. doi: 10.1016/j.ajhg.2019.03.002. Epub 2019 Apr 12.
8
Whole-exome rare-variant analysis of Alzheimer's disease and related biomarker traits.
Alzheimers Dement. 2023 Jun;19(6):2317-2331. doi: 10.1002/alz.12842. Epub 2022 Dec 4.
9
Testing for association with multiple traits in generalized estimation equations, with application to neuroimaging data.
Neuroimage. 2014 Aug 1;96:309-25. doi: 10.1016/j.neuroimage.2014.03.061. Epub 2014 Apr 1.

引用本文的文献

1
DYNATE: Localizing rare-variant association regions via multiple testing embedded in an aggregation tree.
Genet Epidemiol. 2024 Feb;48(1):42-55. doi: 10.1002/gepi.22542. Epub 2023 Nov 28.
2
Rare variants: data types and analysis strategies.
Ann Transl Med. 2021 Jun;9(12):961. doi: 10.21037/atm-21-1635.

本文引用的文献

1
The impact of rare and low-frequency genetic variants in common disease.
Genome Biol. 2017 Apr 27;18(1):77. doi: 10.1186/s13059-017-1212-4.
2
Population-specific genotype imputations using minimac or IMPUTE2.
Nat Protoc. 2015 Sep;10(9):1285-96. doi: 10.1038/nprot.2015.077. Epub 2015 Jul 30.
3
Cosi2: an efficient simulator of exact and approximate coalescent with selection.
Bioinformatics. 2014 Dec 1;30(23):3427-9. doi: 10.1093/bioinformatics/btu562. Epub 2014 Aug 22.
6
Optimal tests for rare variant effects in sequencing association studies.
Biostatistics. 2012 Sep;13(4):762-75. doi: 10.1093/biostatistics/kxs014. Epub 2012 Jun 14.
8
Rare and common variants: twenty arguments.
Nat Rev Genet. 2012 Jan 18;13(2):135-45. doi: 10.1038/nrg3118.
9
Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI.
Acta Neuropathol. 2011 May;121(5):597-609. doi: 10.1007/s00401-011-0808-0. Epub 2011 Feb 11.
10
Rare variant association analysis methods for complex traits.
Annu Rev Genet. 2010;44:293-308. doi: 10.1146/annurev-genet-102209-163421.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验