Suppr超能文献

全基因组测序研究中稀有变异关联区域的动态扫描程序。

Dynamic Scan Procedure for Detecting Rare-Variant Association Regions in Whole-Genome Sequencing Studies.

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.

Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA.

出版信息

Am J Hum Genet. 2019 May 2;104(5):802-814. doi: 10.1016/j.ajhg.2019.03.002. Epub 2019 Apr 12.

Abstract

Whole-genome sequencing (WGS) studies are being widely conducted in order to identify rare variants associated with human diseases and disease-related traits. Classical single-marker association analyses for rare variants have limited power, and variant-set-based analyses are commonly used by researchers for analyzing rare variants. However, existing variant-set-based approaches need to pre-specify genetic regions for analysis; hence, they are not directly applicable to WGS data because of the large number of intergenic and intron regions that consist of a massive number of non-coding variants. The commonly used sliding-window method requires the pre-specification of fixed window sizes, which are often unknown as a priori, are difficult to specify in practice, and are subject to limitations given that the sizes of genetic-association regions are likely to vary across the genome and phenotypes. We propose a computationally efficient and dynamic scan-statistic method (Scan the Genome [SCANG]) for analyzing WGS data; this method flexibly detects the sizes and the locations of rare-variant association regions without the need to specify a prior, fixed window size. The proposed method controls for the genome-wise type I error rate and accounts for the linkage disequilibrium among genetic variants. It allows the detected sizes of rare-variant association regions to vary across the genome. Through extensive simulated studies that consider a wide variety of scenarios, we show that SCANG substantially outperforms several alternative methods for detecting rare-variant-associations while controlling for the genome-wise type I error rates. We illustrate SCANG by analyzing the WGS lipids data from the Atherosclerosis Risk in Communities (ARIC) study.

摘要

全基因组测序(WGS)研究正在广泛进行,以鉴定与人类疾病和疾病相关特征相关的罕见变异。罕见变异的经典单标记关联分析的功效有限,研究人员通常使用基于变异集的分析方法来分析罕见变异。然而,现有的基于变异集的方法需要预先指定用于分析的遗传区域;因此,由于包含大量非编码变异的基因间和内含子区域数量众多,它们不能直接应用于 WGS 数据。常用的滑动窗口方法需要预先指定固定的窗口大小,但这些窗口大小通常是未知的,在实践中很难指定,并且受到限制,因为遗传关联区域的大小可能因基因组和表型而异。我们提出了一种计算高效且动态的扫描统计方法(扫描基因组[SCANG])来分析 WGS 数据;该方法灵活地检测罕见变异关联区域的大小和位置,而无需预先指定固定的窗口大小。所提出的方法控制全基因组的 I 型错误率,并考虑遗传变异之间的连锁不平衡。它允许检测到的罕见变异关联区域的大小在整个基因组中变化。通过考虑各种情况的广泛模拟研究,我们表明,SCANG 在控制全基因组 I 型错误率的同时,大大优于几种用于检测罕见变异关联的替代方法。我们通过分析动脉粥样硬化风险社区(ARIC)研究中的 WGS 脂质数据来展示 SCANG。

相似文献

引用本文的文献

本文引用的文献

5
Genetic Architecture of the Cardiovascular Risk Proteome.心血管风险蛋白质组的遗传结构。
Circulation. 2018 Mar 13;137(11):1158-1172. doi: 10.1161/CIRCULATIONAHA.117.029536. Epub 2017 Dec 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验