Morard Guillaume, Hernandez Jean-Alexis, Guarguaglini Marco, Bolis Riccardo, Benuzzi-Mounaix Alessandra, Vinci Tommaso, Fiquet Guillaume, Baron Marzena A, Shim Sang Heon, Ko Byeongkwan, Gleason Arianna E, Mao Wendy L, Alonso-Mori Roberto, Lee Hae Ja, Nagler Bob, Galtier Eric, Sokaras Dimosthenis, Glenzer Siegfried H, Andrault Denis, Garbarino Gaston, Mezouar Mohamed, Schuster Anja K, Ravasio Alessandra
Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Museum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France;
Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Institut de Recherche pour le Développement, Institut Français des Sciences et Technologies des Transports, de L'aménagement et des Réseaux, ISTerre, 38000 Grenoble, France.
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):11981-11986. doi: 10.1073/pnas.1920470117. Epub 2020 May 15.
Properties of liquid silicates under high-pressure and high-temperature conditions are critical for modeling the dynamics and solidification mechanisms of the magma ocean in the early Earth, as well as for constraining entrainment of melts in the mantle and in the present-day core-mantle boundary. Here we present in situ structural measurements by X-ray diffraction of selected amorphous silicates compressed statically in diamond anvil cells (up to 157 GPa at room temperature) or dynamically by laser-generated shock compression (up to 130 GPa and 6,000 K along the MgSiO glass Hugoniot). The X-ray diffraction patterns of silicate glasses and liquids reveal similar characteristics over a wide pressure and temperature range. Beyond the increase in Si coordination observed at 20 GPa, we find no evidence for major structural changes occurring in the silicate melts studied up to pressures and temperatures exceeding Earth's core mantle boundary conditions. This result is supported by molecular dynamics calculations. Our findings reinforce the widely used assumption that the silicate glasses studies are appropriate structural analogs for understanding the atomic arrangement of silicate liquids at these high pressures.
在高压和高温条件下,液态硅酸盐的性质对于模拟早期地球岩浆海洋的动力学和凝固机制至关重要,同时对于限制地幔以及当今地核-地幔边界处熔体的夹带也很关键。在此,我们展示了通过X射线衍射对选定的非晶态硅酸盐进行原位结构测量的结果,这些硅酸盐在金刚石对顶砧中进行静态压缩(室温下高达157吉帕)或通过激光产生的冲击压缩进行动态压缩(沿MgSiO玻璃雨贡纽曲线高达130吉帕和6000开尔文)。硅酸盐玻璃和液体的X射线衍射图谱在很宽的压力和温度范围内显示出相似的特征。除了在20吉帕时观察到的硅配位数增加外,我们没有发现证据表明在所研究的硅酸盐熔体中,直至压力和温度超过地核-地幔边界条件时会发生重大结构变化。这一结果得到了分子动力学计算的支持。我们的发现强化了广泛使用的假设,即所研究的硅酸盐玻璃是理解这些高压下硅酸盐液体原子排列的合适结构类似物。