Suppr超能文献

前瞻性验证 ICU 患者万古霉素模型指导下精准给药工具。

Prospective validation of a model-informed precision dosing tool for vancomycin in intensive care patients.

机构信息

Radboud Institute for Health Sciences, Department of Pharmacy, Radboud university medical center, Nijmegen, The Netherlands.

Insight Rx, San Francisco, California, USA.

出版信息

Br J Clin Pharmacol. 2020 Dec;86(12):2497-2506. doi: 10.1111/bcp.14360. Epub 2020 Jun 5.

Abstract

AIMS

Vancomycin is an important antibiotic for critically ill patients with Gram-positive bacterial infections. Critically ill patients typically have severely altered pathophysiology, which leads to inefficacy or toxicity. Model-informed precision dosing may aid in optimizing the dose, but prospectively validated tools are not available for this drug in these patients. We aimed to prospectively validate a population pharmacokinetic model for purpose model-informed precision dosing of vancomycin in critically ill patients.

METHODS

We first performed a systematic evaluation of various models on retrospectively collected pharmacokinetic data in critically ill patients and then selected the best performing model. This model was implemented in the Insight Rx clinical decision support tool and prospectively validated in a multicentre study in critically ill patients. The predictive performance was obtained as mean prediction error and relative root mean squared error.

RESULTS

We identified 5 suitable population pharmacokinetic models. The most suitable model was carried forward to a prospective validation. We found in a prospective multicentre study that the selected model could accurately and precisely predict the vancomycin pharmacokinetics based on a previous measurement, with a mean prediction error and relative root mean squared error of respectively 8.84% (95% confidence interval 5.72-11.96%) and 19.8% (95% confidence interval 17.47-22.13%).

CONCLUSION

Using a systematic approach, with a retrospective evaluation and prospective verification we showed the suitability of a model to predict vancomycin pharmacokinetics for purposes of model-informed precision dosing in clinical practice. The presented methodology may serve a generic approach for evaluation of pharmacometric models for the use of model-informed precision dosing in the clinic.

摘要

目的

万古霉素是治疗革兰氏阳性菌感染的危重症患者的重要抗生素。危重症患者通常存在严重的病理生理学改变,这导致疗效不佳或毒性增加。模型指导的精准剂量可能有助于优化剂量,但目前针对该药物在这些患者中的应用尚未有经过前瞻性验证的工具。本研究旨在前瞻性验证一种用于指导危重症患者万古霉素精准剂量的群体药代动力学模型。

方法

我们首先对回顾性收集的危重症患者药代动力学数据中的各种模型进行了系统评价,然后选择了表现最佳的模型。该模型在 Insight Rx 临床决策支持工具中实现,并在一项多中心的危重症患者研究中进行了前瞻性验证。预测性能以平均预测误差和相对均方根误差表示。

结果

我们确定了 5 种合适的群体药代动力学模型。表现最佳的模型被进一步用于前瞻性验证。我们在一项前瞻性多中心研究中发现,所选模型能够基于之前的测量值准确且精确地预测万古霉素的药代动力学,平均预测误差和相对均方根误差分别为 8.84%(95%置信区间 5.72-11.96%)和 19.8%(95%置信区间 17.47-22.13%)。

结论

通过系统的方法,包括回顾性评估和前瞻性验证,我们证明了该模型适合预测万古霉素的药代动力学,可用于指导临床实践中的模型指导的精准剂量。所提出的方法可以作为评估用于临床实践中的模型指导的精准剂量的药代动力学模型的通用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c767/7688533/c8ba9d989fc1/BCP-86-2497-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验