Suppr超能文献

为模型指导下的精准给药开发参数和非参数模型:肥胖患者万古霉素的质量改进努力。

Developing Parametric and Nonparametric Models for Model-Informed Precision Dosing: A Quality Improvement Effort in Vancomycin for Patients With Obesity.

机构信息

InsightRX, San Francisco, California; and.

University of Vermont Medical Center, Burlington, Vermont.

出版信息

Ther Drug Monit. 2024 Oct 1;46(5):575-583. doi: 10.1097/FTD.0000000000001214. Epub 2024 May 10.

Abstract

BACKGROUND

Both parametric and nonparametric methods have been proposed to support model-informed precision dosing (MIPD). However, which approach leads to better models remains uncertain. Using open-source software, these 2 statistical approaches for model development were compared using the pharmacokinetics of vancomycin in a challenging subpopulation of class 3 obesity.

METHODS

Patients on vancomycin at the University of Vermont Medical Center from November 1, 2021, to February 14, 2023, were entered into the MIPD software. The inclusion criteria were body mass index (BMI) of at least 40 kg/m 2 and 1 or more vancomycin levels. A parametric model was created using nlmixr2/NONMEM, and a nonparametric model was created using Pmetrics. Then, a priori and a posteriori predictions were evaluated using the normalized root mean squared error (nRMSE) for precision and the mean percentage error (MPE) for bias. The parametric model was evaluated in a simulated MIPD context using an external validation dataset.

RESULTS

In total, 83 patients were included in the model development, with a median age of 56.6 years (range: 24-89 years), and a median BMI of 46.3 kg/m 2 (range: 40-70.3 kg/m 2 ). Both parametric and nonparametric models were 2-compartmental, with creatinine clearance and fat-free mass as covariates to clearance and volume parameters, respectively. The a priori MPE and nRMSE for the parametric versus nonparametric models were -6.3% versus 2.69% and 27.2% versus 30.7%, respectively. The a posteriori MPE and RMSE were 0.16% and 0.84%, and 13.8% and 13.1%. The parametric model matched or outperformed previously published models on an external validation dataset (n = 576 patients).

CONCLUSIONS

Minimal differences were found in the model structure and predictive error between the parametric and nonparametric approaches for modeling vancomycin class 3 obesity. However, the parametric model outperformed several other models, suggesting that institution-specific models may improve pharmacokinetics management.

摘要

背景

已有参数法和非参数法被提出以支持模型指导下的精准剂量调整(MIPD)。然而,哪种方法能构建更好的模型仍不确定。本研究使用开源软件,通过 3 类肥胖这一挑战性亚组人群的万古霉素药动学比较了这 2 种统计方法用于模型开发。

方法

2021 年 11 月 1 日至 2023 年 2 月 14 日期间,佛蒙特大学医学中心使用 MIPD 软件的万古霉素患者被纳入研究。纳入标准为体重指数(BMI)至少为 40kg/m 2 且至少有 1 次万古霉素血药浓度。使用 nlmixr2/NONMEM 建立参数模型,使用 Pmetrics 建立非参数模型。然后使用归一化均方根误差(nRMSE)评估精度和平均百分比误差(MPE)评估偏差的先验和后验预测。在使用外部验证数据集的模拟 MIPD 环境中评估参数模型。

结果

共纳入 83 例患者用于模型建立,中位年龄 56.6 岁(范围:24-89 岁),中位 BMI 为 46.3kg/m 2 (范围:40-70.3kg/m 2 )。参数和非参数模型均为 2 室模型,以肌酐清除率和去脂体重分别为清除率和体积参数的协变量。参数与非参数模型的先验 MPE 和 nRMSE 分别为-6.3%和 27.2%、2.69%和 30.7%。后验 MPE 和 nRMSE 分别为 0.16%和 0.84%、13.8%和 13.1%。在外部验证数据集(n=576 例患者)上,参数模型与先前发表的模型匹配或优于这些模型。

结论

对于 3 类肥胖的万古霉素建模,参数法和非参数法在模型结构和预测误差方面差异极小。然而,参数模型优于其他几种模型,提示建立机构特异性模型可能会改善药动学管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be72/11389886/84b7493f8450/tdm-46-575-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验