Suppr超能文献

采用气相色谱-离子迁移谱法(GC-IMS)对金华火腿陈酿过程中特征香气成分进行分析。

Characterization of Jinhua ham aroma profiles in specific to aging time by gas chromatography-ion mobility spectrometry (GC-IMS).

机构信息

College of Food Science and Technology, Bohai University, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.

Department of Food Science & Technology, Shanghai Jiaotong University, Shanghai 200240, China; Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, USA.

出版信息

Meat Sci. 2020 Oct;168:108178. doi: 10.1016/j.meatsci.2020.108178. Epub 2020 May 7.

Abstract

A rapid method for analyzing of Jinhua ham samples in different aging time was created based on gas chromatography-ion mobility spectrometry (GC-IMS). The GC-IMS chromatograph provided information regarding the identities and intensities of 37 volatile flavor compounds, including both monomers and dimers. Principal component analysis (PCA) effectively distinguished the variation in the aroma of the Jinhua hams specific to aging time. Alcohol (octanol, 2-methylbutanol), ketones (2-butanone, 2-hexanone, 2-heptanone, acetoin, gamma-butyrolactone), aldehydes (butanal, 3-methylbutanal), ester (propyl acetate) and carboxylic acids (3-methylbutanoic acid) were considered as the main volatile compounds in the Jinhua ham samples. This GC-IMS method, then, proved to be feasible for the rapid and comprehensive detection of volatile compounds in Jinhua hams, and multivariance analysis (i.e.: PCA) was able to provide information related to aging time.

摘要

建立了一种基于气相色谱-离子迁移谱(GC-IMS)快速分析不同陈化时间金华火腿样品的方法。GC-IMS 色谱仪提供了 37 种挥发性风味化合物的身份和强度信息,包括单体和二聚体。主成分分析(PCA)有效地区分了金华火腿香气随陈化时间的变化。醇类(辛醇、2-甲基丁醇)、酮类(2-丁酮、2-己酮、2-庚酮、乙酰基丙同、γ-丁内酯)、醛类(丁醛、3-甲基丁醛)、酯类(丙酸丙酯)和羧酸类(3-甲基丁酸)被认为是金华火腿样品中的主要挥发性化合物。因此,GC-IMS 方法被证明可用于快速全面检测金华火腿中的挥发性化合物,多变量分析(即:PCA)能够提供与陈化时间相关的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验