Wang Kaiyang, Pan Wenyang, Liu Zheng, Wallin Thomas J, van Dover Geoffrey, Li Shuo, Giannelis Emmanuel P, Menguc Yigit, Shepherd Robert F
Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA.
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
Adv Mater. 2020 Jun;32(25):e2001646. doi: 10.1002/adma.202001646. Epub 2020 May 17.
The rheological parameters required to print viscoelastic nanoparticle suspensions toward tough elastomers via Digital Light Synthesis (DLS) (an inverted projection stereolithography system) are reported. With a model material of functionalized silica nanoparticles suspended in a poly(dimethylsiloxane) matrix, the rheological-parameters-guided DLS can print structures seven times tougher than those formed from the neat polymers. The large yield stress and high viscosity associated with these high concentration nanoparticle suspensions, however, may prevent pressure-driven flow, a mechanism essential to stereolithography-based printing. Thus, to better predict and evaluate the printability of high concentration nanoparticle suspensions, the boundary of rheological properties compatible with DLS is defined using a non-dimensional Peclet number (Pe). Based on the proposed analysis of rheological parameters, the border of printability at standard temperature and pressure (STP) is established by resin with a silica nanoparticle mass fraction (ϕ ) of 0.15. Above this concentration, nanoparticle suspensions have Pe > 1 and are not printable. Beyond STP, the printability can be further extended to ϕ = 0.20 via a heating module with lower shear rate to reduce the Pe < 1. The printed rubber possesses even higher toughness (Γ ≈ 155 kJ m ), which is 40% higher over that of ϕ = 0.15.
本文报道了通过数字光合成(DLS,一种倒置投影立体光刻系统)将粘弹性纳米颗粒悬浮液打印成坚韧弹性体所需的流变学参数。以悬浮在聚二甲基硅氧烷基质中的功能化二氧化硅纳米颗粒为模型材料,流变学参数引导的DLS可以打印出比纯聚合物形成的结构坚韧七倍的结构。然而,这些高浓度纳米颗粒悬浮液所具有的高屈服应力和高粘度可能会阻止压力驱动流动,而压力驱动流动是基于立体光刻的打印所必需的机制。因此,为了更好地预测和评估高浓度纳米颗粒悬浮液的可打印性,使用无量纲佩克莱数(Pe)定义了与DLS兼容的流变学特性边界。基于对流变学参数的分析,在标准温度和压力(STP)下,二氧化硅纳米颗粒质量分数(ϕ)为0.15的树脂确定了可打印性边界。高于此浓度,纳米颗粒悬浮液的Pe>1且不可打印。在STP以上,通过具有较低剪切速率的加热模块可将可打印性进一步扩展到ϕ = 0.20,以降低Pe<1。打印出的橡胶具有更高的韧性(Γ≈155 kJ m),比ϕ = 0.15时高出40%。