Duplouy Lucie, Moissette Alain, Hureau Matthieu, De Waele Vincent, Daou T Jean, Batonneau-Gener Isabelle
LASIRE, Bât. C5, Faculté des Sciences et Technologies, Université de Lille, 59655 Villeneuve d'Ascq Cedex, France.
Université de Haute Alsace (UHA), CNRS, IS2M (Institut de Science des Matériaux de Mulhouse), UMR 7361, F-68100 Mulhouse, France and Université de Strasbourg, France.
Phys Chem Chem Phys. 2020 Jun 4;22(21):12015-12027. doi: 10.1039/d0cp01701a.
In the present work, we investigate the electron transfer occurring in the porous void of three MFI-type zeolite (ZSM-5) nanomaterials (nanocrystals, nanosheets and nanosponges) after adsorption and photoexcitation of t-stilbene (t-St). ZSM-5 nanosheets are constituted of lamellar stacking of several nanosheets (20-40 nm) where each nanosheet has a thickness of 2 nm. Nanosponges are composed of ZSM-5 nanocrystals (2-3 nm) separated by mesoporous holes of 5.8 nm facilitating the synthesis of hierachical materials. While the nanosheets show microporosity similar to that observed for the ZSM-5 nanocrystals, the absorption isotherms of the nanosponges show the existence of secondary micropores. After photoirradiation of t-St, UV-vis absorption spectroscopy shows the formation of charge separated states (radical cation and charge transfer complex) in the nanocrystals and in the nanosheets whereas no ionized species is detected in the nanosponges. The radical cation (RC) is stabilized in the nanosheets while it evolves very rapidly towards a Charge Transfer Complex (CTC) in the nanocrocrystals. The particular morphology of the nanosheets and nanosponges is put forward to explain this result since all host materials are of the MFI-type. To investigate ultra-short phenomena in the three nanomaterials, the UV-vis transient spectra were recorded between 2 and 450 μs after photoexcitation by nanosecond laser pulses. In the nanocrystals and nanosheets only the RC is detected whereas CTC formation is not observed. Photoexcitation of t-St in the nanosponges also leads to the formation of a RC but it recombines completely within 70 μs. This suggests the preferential location of t-St in the secondary micropores with pores larger than the micropores of the MFI-type framework and possibly in the mesopores of the nanosponges.
在本工作中,我们研究了反式二苯乙烯(t-St)吸附和光激发后,三种MFI型沸石(ZSM-5)纳米材料(纳米晶体、纳米片和纳米海绵)多孔空隙中发生的电子转移。ZSM-5纳米片由几个纳米片(20 - 40纳米)的层状堆叠构成,每个纳米片的厚度为2纳米。纳米海绵由ZSM-5纳米晶体(2 - 3纳米)组成,中间有5.8纳米的介孔,有利于分级材料的合成。虽然纳米片显示出与ZSM-5纳米晶体类似的微孔性,但纳米海绵的吸附等温线表明存在二级微孔。t-St光照射后,紫外-可见吸收光谱表明在纳米晶体和纳米片中形成了电荷分离态(自由基阳离子和电荷转移复合物),而在纳米海绵中未检测到离子化物种。自由基阳离子(RC)在纳米片中稳定,而在纳米晶体中它会迅速向电荷转移复合物(CTC)演化。由于所有主体材料均为MFI型,因此提出了纳米片和纳米海绵的特殊形态来解释这一结果。为了研究这三种纳米材料中的超短现象,在纳秒激光脉冲光激发后2至450微秒之间记录了紫外-可见瞬态光谱。在纳米晶体和纳米片中仅检测到RC,未观察到CTC的形成。t-St在纳米海绵中的光激发也导致了RC的形成,但它在70微秒内完全重组。这表明t-St优先位于二级微孔中,这些微孔大于MFI型骨架的微孔,可能也位于纳米海绵的介孔中。