Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.
Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
J Mol Biol. 2020 Jun 12;432(13):3761-3770. doi: 10.1016/j.jmb.2020.05.002. Epub 2020 May 16.
Brain-derived neurotrophic factor, via activation of tropomyosin receptor kinase B (TrkB), plays a critical role in neuronal proliferation, differentiation, survival, and death. Dysregulation of TrkB signaling is implicated in neurodegenerative disorders and cancers. Precise activation of TrkB signaling with spatial and temporal resolution is greatly desired to study the dynamic nature of TrkB signaling and its role in related diseases. Here we develop different optogenetic approaches that use light to activate TrkB signaling. Utilizing the photosensitive protein Arabidopsis thaliana cryptochrome 2, the light-inducible homo-interaction of the intracellular domain of TrkB in the cytosol or on the plasma membrane is able to induce the activation of downstream MAPK/ERK and PI3K/Akt signaling as well as the neurite outgrowth of PC12 cells. Moreover, we prove that such strategies are generalizable to other optical homo-dimerizers by demonstrating the optical TrkB activation based on the light-oxygen-voltage domain of aureochrome 1 from Vaucheria frigida. The results open up new possibilities of many other optical platforms to activate TrkB signaling to fulfill customized needs. By comparing all the different strategies, we find that the cryptochrome 2-integrated approach to achieve light-induced cell membrane recruitment and homo-interaction of intracellular domain of TrkB is most efficient in activating TrkB signaling. The optogenetic strategies presented are promising tools to investigate brain-derived neurotrophic factor/TrkB signaling with tight spatial and temporal control.
脑源性神经营养因子(Brain-derived neurotrophic factor, BDNF)通过激活原肌球蛋白受体激酶 B(tropomyosin receptor kinase B, TrkB),在神经元的增殖、分化、存活和死亡中发挥关键作用。TrkB 信号转导的失调与神经退行性疾病和癌症有关。精确激活具有时空分辨率的 TrkB 信号转导对于研究 TrkB 信号转导的动态性质及其在相关疾病中的作用非常重要。在这里,我们开发了几种不同的光遗传学方法,利用光来激活 TrkB 信号转导。利用光敏蛋白拟南芥隐花色素 2,细胞质或质膜上 TrkB 细胞内结构域的光诱导同型相互作用能够诱导下游 MAPK/ERK 和 PI3K/Akt 信号转导以及 PC12 细胞的突起生长。此外,我们通过证明基于 Vaucheria frigida 的 aureochrome 1 的光氧电压域的光 TrkB 激活,证明了这种策略是可推广到其他光学同型二聚体的。结果为许多其他光学平台激活 TrkB 信号转导以满足定制需求开辟了新的可能性。通过比较所有不同的策略,我们发现,基于 cryptochrome 2 的方法实现光诱导细胞膜募集和 TrkB 细胞内结构域的同型相互作用在激活 TrkB 信号转导方面最为有效。所提出的光遗传学策略是研究脑源性神经营养因子/TrkB 信号转导的有前途的工具,可以实现紧密的时空控制。