Suppr超能文献

Air layer during the impact of droplets on heated substrates.

作者信息

Qi Haicheng, Wang Tianyou, Che Zhizhao

机构信息

State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.

出版信息

Phys Rev E. 2020 Apr;101(4-1):043114. doi: 10.1103/PhysRevE.101.043114.

Abstract

When a droplet impacts on a substrate, the air underneath the droplet is compressed to form an air layer of a dimple shape before the droplet wets the substrate. This air layer is important to the impact dynamics, and many studies have been performed to investigate the air layer during the impact process on unheated substrates. In this experimental study of the air layer, our results reveal that the air layer is profoundly affected by the substrate temperature, even if the substrate temperature is below the boiling point of the droplet fluid. We use high-speed imaging and color interferometry to measure the air layer with nanometer accuracy. The results show that the thickness of the air layer increases with increasing the substrate temperature. Compared with the impact of the droplet on the unheated substrate, the average thickness of the air layer on the heated substrate at 70 °C is about 12% thicker. This will affect the subsequent bubble entrapment, which is an important feature of the impact dynamics. A simplified model is proposed to consider the heat transfer in the air layer. Additionally, the effects of the Weber number, the fluid viscosity, and the size of the droplet on the air layer are also analyzed. This study sheds light on controlling the impact dynamics of droplets by adjusting the substrate temperature.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验