GIGA-Cyclotron Research Center-in vivo imaging, University of Liège, Allée du 6 Août, B30, 4000 Liege, Belgium.
Molecules. 2020 May 14;25(10):2303. doi: 10.3390/molecules25102303.
Many neurological disorders are related to synaptic loss or pathologies. Before the boom of positrons emission tomography (PET) imaging of synapses, synaptic quantification could only be achieved in vitro on brain samples after autopsy or surgical resections. Until the mid-2010s, electron microscopy and immunohistochemical labelling of synaptic proteins were the gold-standard methods for such analyses. Over the last decade, several PET radiotracers for the synaptic vesicle 2A protein have been developed to achieve in vivo synapses visualization and quantification. Different strategies were used, namely radiolabelling with either C or F, preclinical development in rodent and non-human primates, and binding quantification with different kinetic modelling methods. This review provides an overview of these PET tracers and underlines their perspectives and limitations by focusing on radiochemical aspects, as well as preclinical proof-of-concept and the main clinical outcomes described so far.
许多神经紊乱都与突触丧失或病变有关。在正电子发射断层扫描(PET)成像突触技术兴起之前,突触的定量只能在尸检或手术切除后的脑样本上进行体外检测。直到 21 世纪 10 年代中期,电子显微镜和突触蛋白的免疫组织化学标记仍然是此类分析的金标准方法。在过去十年中,已经开发了几种用于突触小泡 2A 蛋白的 PET 放射性示踪剂,以实现体内突触可视化和定量。为此使用了不同的策略,即用 C 或 F 进行放射性标记,在啮齿动物和非人类灵长类动物中进行临床前开发,以及使用不同的动力学建模方法进行结合定量。本文综述了这些 PET 示踪剂,并通过关注放射性化学方面以及迄今为止描述的临床前概念验证和主要临床结果,强调了它们的前景和局限性。